Ordre convexe fonctionnel pour les processus stochastiques : une approche constructive (et simulable)

Gilles Pagès

(including joint works with B. Jourdain, Y. Liu \& C. Yeo)

LPSM-Sorbonne-Université

Cours Bachelier

26 avril 2024

Outline

(1) Convex ordering: definitions and first (static) examples

- Convex ordering
- Convexity (without order...)
(2) Characterization of convex orderings
(3) Functional convex ordering

4 Martingale (and scaled) Brownian diffusions

- Discrete time: ARCH model...
- Functional limit theorem: . . . to continuous time
- Back to $1 D$ (Jourdain-P. '23, ArXiv)
- Directionally convex functionals
(5) Jump diffusions
(6) Bermuda and American options
- Brownian diffusions
- Jump martingale diffusions
(7) McKean-Vlasov diffusions (with Y. Liu, to appear in AAP)
- McKean-Vlasov equations
- Convex order for McKean-Vlasov diffusions
(8) Volterra equations (with B. Jourdain '24)

Definitions

Definition (Convex ordering)

Let $U, V \in L_{\mathbb{R}^{d}}^{1}(\mathbb{P})$ be two \mathbb{R}^{d}-valued random vectors with distributions μ and ν. (a) Convex ordering. We say that U is dominated for the convex ordering by V, denoted

$$
U \preceq_{c v x} V
$$

if, for every convex function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$,

$$
\begin{equation*}
\mathbb{E} f(U) \leq \mathbb{E} f(V) \in(-\infty,+\infty] \tag{1}
\end{equation*}
$$

or, equivalently, that μ is dominated by ν for the convex ordering if, for every convex function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}, \int_{\mathbb{R}^{d}} f d \mu \leq \int_{\mathbb{R}^{d}} f d \nu$.
(b) Monotone convex ordering ($d=1$). When (1) only holds for non-decreasing/non-increasing convex functions f, the convex ordering is called increasing/decreasing convex order respectively denoted

$$
U \preceq_{i c v} V \quad \text { and } \quad U \preceq_{d c v} V \text {. }
$$

Consistency

- For every $x \in \mathbb{R}^{d}$, by convexity of $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$,

$$
f(x) \geq f(0)+\left\langle\nabla_{s} f(0) \mid x\right\rangle
$$

where $\nabla_{s} f(0)$ denotes a subgradient of f at 0 .

- Hence

$$
f^{-}(x) \leq\left(f(0)+\left\langle\nabla_{s} f(0) \mid x\right\rangle\right)^{-} \leq|f(0)|+\left|\nabla_{s} f(0)\right||x|
$$

so that

$$
\mathbb{E} f^{-}(U) \leq|f(0)|+\left|\nabla_{s} f(0)\right| \mathbb{E}|U|<+\infty
$$

Consequently
$\mathbb{E} f(U)=\underbrace{\mathbb{E} f^{+}(U)}_{\in[0,+\infty]}-\underbrace{\mathbb{E} f^{-}(U)}_{\in[0,+\infty)} \in(-\infty,+\infty]$ is well-defined.

First properties (of $\preceq_{c v x}$)

- P1. As $\left.f\left(x_{1}, \ldots, x_{d}\right)\right)= \pm x_{i}, i=1: d$, are all convex, $U \preceq_{c v x} V$ implies

$$
\mathbb{E} U=\mathbb{E} V
$$

- P2. If, $U, V \in L^{2}(\mathbb{P}), U \preceq \preceq_{c v x} V$, then we have with $f(x)=|x|^{2}$

$$
\operatorname{Var}(U) \leq \operatorname{Var}(V)
$$

$\left[\right.$ where $\left.\operatorname{Var}(U)=\mathbb{E}|U|^{2}-|\mathbb{E} U|^{2}\right]$.

- P3. If $U \preceq_{i c v} V$, then $\mathbb{E} U \leq \mathbb{E} V$.
- P4.

$$
U \preceq d c v V \Longleftrightarrow-U \preceq_{i c v}-V
$$

since $f(x)=f(-(-x))$ and $f(-\cdot)$ is convex with opposite monotony.

Convex ordering is a kind of generalization of the measure of risk
through the variance.

Examples I

- If $U=\mathbb{E}(V \mid U)$ then, for every convex function such that $f(V) \in L^{1}(\mathbb{P})$,

$$
\mathbb{E} f(U)=\mathbb{E} f(\mathbb{E}(V \mid U)) \leq \mathbb{E}[\mathbb{E}(f(V) \mid U)]=\mathbb{E} f(V)
$$

owing to Jensen's inequality. Obvious if $\mathbb{E} f(V)=+\infty$.

- If $U \Perp W, W \in L^{1}(\mathbb{P}), \mathbb{E} W=0$, then $U \preceq_{c v x} U+W$. $\left[\mu \preceq_{c v x} \mu * \nu_{0}\right]$
- $\delta_{\mathbb{E} V} \preceq_{c v x} V .\left[\delta_{j \xi \nu(d \xi)} \preceq_{c v x} \nu\right]$
- Gaussian distributions (centered): Let $Z \sim \mathcal{N}\left(0, I_{q}\right)$ on \mathbb{R}^{q} and let A, $B \in \mathbb{M}_{d, q}$ be $d \times q$ matrices

$$
A A^{*} \leq B B^{*} \text { in } \mathcal{S}^{+}(d, \mathbb{R}) \Longleftrightarrow A Z \preceq_{c v x} B Z
$$

or equivalently $\mathcal{N}\left(0, A A^{*}\right) \preceq_{c v x} \mathcal{N}\left(0, B B^{*}\right)$.
In particular if $d=q=1,|\sigma| \leq|\vartheta| \Longleftrightarrow \mathcal{N}\left(0, \sigma^{2}\right) \preceq_{c v x} \mathcal{N}\left(0, \vartheta^{2}\right)$.

- Proof. Let $Z_{1}, Z_{2} \sim \mathcal{N}\left(0 ; I_{q}\right)$ be independent. Set

$$
U=A Z_{1}, \quad V=U+\left(B B^{*}-A A^{*}\right)^{1 / 2} Z_{2} .
$$

Then $U=\mathbb{E}(V \mid U)$ and $V \sim \mathcal{N}\left(0, A A^{*}+\left(\left(B B^{*}-A A^{*}\right)^{1 / 2}\right)^{2}\right)=\mathcal{N}\left(0, B B^{*}\right)$.

- 1D-proof: $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ convex and $Z \in L^{1}, Z \stackrel{d}{=}-Z$. Then, by Jensen's \leq, $u \mapsto \mathbb{E} \varphi(u Z)$ is even, convex and attains its minimum $\varphi(0)$ at $u=0$.

Hence $u \mapsto \mathbb{E} \varphi(u Z)$ is non-decreasing on \mathbb{R}_{+}and non-increasing on \mathbb{R}_{-}.

- Generalization: radial distributions: Let $Z:(\Omega, \mathcal{A}, \mathbb{P}) \rightarrow \mathbb{R}^{q}$ having a radial distribution in the sense

$$
\forall O \in \mathcal{O}(q), \quad O Z \sim Z
$$

Let $A, B \in \mathbb{M}_{d, q}$. Then

$$
A A^{*} \leq B B^{*} \text { in } \mathcal{S}^{+}(d, \mathbb{R}) \Longrightarrow A Z \preceq_{c v x} B Z
$$

We skip the proof (exercise with solution in $\left({ }^{1}\right)$).

[^0]- If $U \preceq_{c v x} V$ and $U^{\prime} \preceq_{c v x} V^{\prime}, U \Perp U^{\prime}, V \Perp V^{\prime}$ then

$$
U+U^{\prime} \preceq_{c v x} V+V^{\prime} .
$$

[$\mu \preceq_{\operatorname{crx}} \nu$ and $\mu^{\prime} \preceq_{\operatorname{crx}} \nu^{\prime} \Rightarrow \mu * \mu^{\prime} \preceq_{\operatorname{crx}} \nu * \nu^{\prime}$]. By Fubini's Theorem

$$
\begin{aligned}
\mathbb{E} f\left(U+U^{\prime}\right) & =\int_{\mathbb{R}^{d}} \mathbb{E} f\left(u+U^{\prime}\right) \mathbb{P} u(d u) \leq \int_{\mathbb{R}^{d}} \mathbb{E} f\left(u+V^{\prime}\right) \mathbb{P} u(d u) \\
& \leq \int_{\mathbb{R}^{d}} \mathbb{E} f\left(u+V^{\prime}\right) \mathbb{P}_{U^{\prime}}(d u)=\mathbb{E} f\left(U^{\prime}+V^{\prime}\right)
\end{aligned}
$$

- If $\left(U_{n}\right)_{n \geq 1}$ i.i.d. $\sim U$ and $\left(V_{n}\right)_{n \geq 1}$ i.i.d. $\sim V$, centered, $\Perp N, M$, $N \leq M$, having values in \mathbb{N}_{0}, integrable

$$
\sum_{k=1}^{N} U_{k} \preceq_{c v x} \sum_{k=1}^{N} V_{k} \preceq_{c v x} \sum_{k=1}^{M} V_{k}
$$

Obvious by induction when N and M are integers, etc.

Example II: martingales, peacocks

- If $\left(X_{t}\right)_{t \geq 0}$ is a martingale, then
$t \longmapsto X_{t}$ is non-decreasing for the convex ordering
i.e. $0 \leq s \leq t \Rightarrow X_{s} \preceq_{c v x} X_{t}$ since

$$
\forall 0 \leq s \leq t, \quad X_{s}=\mathbb{E}\left(X_{t} \mid X_{s}\right) .
$$

- More generally, a process such that
$t \longmapsto X_{t}$ is non-decreasing for the convex ordering
is called p.c.o.c (for "Processus Croissant pour l'Ordre Convexe" in French) or even "peacock"...).
- Thus, any martingale is a peacock!
- More generally, if $X_{t} \sim M_{t}, t \geq 0$, where $\left(M_{t}\right)_{t \geq 0}$ is a martingale, then $\left(X_{t}\right)_{t \geq 0}$ is a peacock

About converses of " $U=\mathbb{E}(V \mid U) \Rightarrow U \preceq_{c v x} V$ " and "1-martingale \Rightarrow p.c.o.c."

- Strassen's Theorem (1965): $\mu \preceq_{c v x} \nu \Longleftrightarrow \exists$ transition $P(x, d y)$ s.t.

$$
\nu=\mu P \quad \text { and } \quad \forall x \in \mathbb{R}^{d}, \quad \int y P(x, d y)=x
$$

- Kellerer's Theorem (1972):
X is a p.c.o.c,$\Longleftrightarrow \exists\left(M_{t}\right)_{t \geq 0}$ such that $X_{t} \stackrel{d}{=} M_{t}, t \geq 0$,
(X is sometimes called a "1-martingale").
- Both proofs are unfortunately non-constructive.
- In Hirsch, Roynette, Profeta \& Yor's monography (${ }^{2}$), many (many...) explicit "representations" of p.c.o.c. by true martingales. Also, investigations on 2 -martingales, n-martingales...

[^1]
A revival motivated by Finance. . .

- A starter! t being fixed, $\sigma \mapsto e^{\sigma W_{t}-\frac{\sigma^{2} t}{2}}$ is a p.c.o.c. since

$$
\forall \sigma>0, \quad e^{\sigma W_{t}-\frac{\sigma^{2} t}{2}} \stackrel{d}{=} e^{W_{\sigma^{2} t}-\frac{\sigma^{2} t}{2}}(\rightarrow \text { martingale w.r.t. } \sigma) .
$$

- Application to Black-Scholes model $S_{t}^{\sigma}=s_{0} e^{\sigma W_{t}-\frac{\sigma^{2} t}{2}}$. For every convex payoff function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$

$$
0<\sigma \leq \sigma^{\prime} \Longrightarrow \mathbb{E} f\left(S_{t}^{\sigma}\right) \leq \mathbb{E} f\left(S_{t}^{\sigma^{\prime}}\right)
$$

- Vanilla options: Call and Put options: $f\left(S_{T}\right)=\left(S_{T}-K\right)^{+}$, $f\left(S_{T}\right)=\left(K-S_{T}\right)^{+}$, etc.
- In fact, $U \preceq_{i c v x} V$ iff $\forall K \in \mathbb{R}, \mathbb{E}(U-K)^{+} \leq \mathbb{E}(V-K)^{+}$
- and $U \preceq_{c v x} V$ iff $\mathbb{E} U=\mathbb{E} V$ and $\forall K \in \mathbb{R}, \mathbb{E}(U-K)^{+} \leq \mathbb{E}(V-K)^{+}$.

Path-dependent payoffs

- E.g. what about path-dependent options like Asian payoffs. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$convex

$$
\sigma \longmapsto \operatorname{Premium}(\sigma)=\mathbb{E}[f(\frac{1}{T} \int_{0}^{T} \underbrace{s_{0} e^{\sigma W_{t}-\frac{\sigma^{2} t}{2}}}_{=S_{t}^{\sigma}} d t)] ?
$$

- P. Carr et al. (2008):

Non-decreasing in σ when $f(x)=(x-K)^{+}$(Asian Call).

- Baker-Yor (2010):
$\sigma \mapsto \frac{1}{T} \int_{0}^{T} s_{0} e^{\sigma W_{t}-\frac{\sigma^{2} t}{2}} d t \stackrel{(t=u T)}{=} \int_{0}^{1} s_{0} e^{W_{u \sigma^{2} T}-\frac{u \sigma^{2} T}{2}} d u \stackrel{d}{=} \int_{0}^{1} s_{0} e^{W_{u, \sigma^{2} T}-\frac{u \sigma^{2} T}{2}} d u$
where $\left(W_{u, t}\right)_{u, t \geq 0}$ is a standard Brownian sheet. Hence a p.c.o.c. since

$$
t \mapsto \int_{0}^{1} s_{0} e^{W_{u, t}-\frac{\omega t}{2}} d u \text { is an }\left(\mathcal{F}_{1, t}\right)_{t \geq 0} \text {-martingale. }
$$

- Yields bounds on the option prices of vanilla options:

$$
\sigma_{\min } \leq \sigma \leq \sigma_{\max } \Longrightarrow \text { etc. }
$$

\triangleright This suggests many other (new or not so new) questions !

- Non-decreasing convex ordering: \exists drift b ! [see [Hajek, 1985] (${ }^{3}$).
- Functional convex order I: Switch from $B S$ to local volatility models i.e. from scalar (or vector) parameter to a functional parameter.

$$
\sigma \rightsquigarrow \sigma(x)
$$

[see e.g. El Karoui-Jeanblanc-Schreve, 1998] i.e.

$$
d X_{t}=\sigma\left(X_{t}\right) d W_{t}, X_{0} \Perp W \text { vs } d Y_{t}=\theta\left(Y_{t}\right) d W_{t}, Y_{0} \Perp W, X_{0} \preceq c v x Y_{0}, \ldots ?
$$

- m-marginal path-dependent convex order: $f\left(X_{t}\right) \rightsquigarrow F\left(X_{t_{1}}, \ldots, X_{t_{m}}\right)$ [see Brown, Rogers, Hobson 2001, Rüschendorf et al., 2008].
- Functional convex order II : from $\mathbb{E} f\left(X_{T}^{(\sigma)}\right)$ to $\mathbb{E} F\left(X^{(\sigma)}\right)$ path-dependent convex order, [see P.2016].
- Bermuda and American options [see Pham 2005, Rüschendorf 2008, P. 2016].
- Jumpy risky asset dynamics for $\left(X_{t}^{\sigma}\right)$? [see Rüschendorf-Bergenthum, 2007, P. 2016]).
- P.c.o.c. trough Martingale Optimal Transport. [see Beïgelbock, Henry-Labordère et al, 2013, Tan et al. 2015, Jourdain-P. 2020].
${ }^{3}$ Hajek, B., Mean stochastic comparison of diffusions. Z. Wahrsch. Verw. Gebiete 68 (1985), no. 3, 315-329.

More questions about convexity

- A side (?) question of interest : propagation of convexity in the sense

$$
f: \mathbb{R} \rightarrow \mathbb{R} \text { convex } \Longrightarrow x \longmapsto \mathbb{E} f\left(X_{T}^{x}\right) \text { convex ? }
$$

e.g. in a1D- local volatility model like

$$
X_{t}^{\times}=x+\int_{0}^{t} r X_{s}^{\times} d s+\int_{0}^{t} X_{s}^{\times} \vartheta\left(s, X_{s}^{\times}\right) d W_{s} .
$$

- More generally, when do we have such propagation of convexity if

$$
X_{t}^{\times}=x+\int_{0}^{t} \alpha\left(X_{s}^{\times}+\beta\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}^{\times}\right) d W_{s} \quad ?
$$

- Extensions to convex functionals $F: \mathcal{C}([0, T], \mathbb{R}) \rightarrow \mathbb{R}$ and to higher dimensional processes $(d \geq 2)$?
- Similar questions for monotonic convexity with a more general drift

$$
X_{t}^{\times}=x+\int_{0}^{t} b\left(s, X_{s}^{\times}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}^{\times}\right) d W_{s} .
$$

Direct approach: first reduction

- Assume $\sigma(t, y)$ Lipschitz in y uniformly in $t \in[0, T]$ and $\sigma(\cdot, 0)$ bounded.
- Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be convex

$$
X_{t}^{\times}=x+\int_{0}^{t} \alpha\left(X_{s}^{\times}+\beta\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}^{\times}\right) d W_{s} .
$$

- Setting

$$
\widetilde{X}_{t}^{x}=e^{\alpha t} X_{t}-\beta\left(1-e^{\alpha t}\right)
$$

and

$$
\widetilde{\sigma}(t, y)=e^{\alpha t} \sigma\left(t, e^{-\alpha t} y-\beta\left(1-e^{-\alpha t}\right)\right)
$$

yields

$$
\widetilde{X}^{x}=x+\int_{0}^{t} \widetilde{\sigma}\left(s, \widetilde{X}_{s}^{x}\right) d W_{s}
$$

where $\widetilde{\sigma}(t, y)$ Lipschitz in y uniformly in $t \in[0, T]$.

- Hence, we may assume w.l.g. $\alpha=\beta=0$.

Aims and methods

(1) Unify and generalize existing results with of focus on both functional aspects of functional convex ordering.

- with a focus on both functional aspects of functional convex ordering.
- As a by-product establish the convexity of $x \mapsto \mathbb{E} f\left(X_{T}^{x}\right)$ and/or $x \mapsto \mathbb{E} F\left(x^{x}\right)$.
(2) Constraint: provide a constructive method of proof.
- based on time discretization of continuous time martingale dynamics (risky assets in Finance).
- using numerical schemes that preserve the functional convex order satisfied by the process under consideration...
- to avoid arbitrages.
(3) Apply the paradigm to various frameworks:
- American style options,
- jump diffusions,
- stochastic integrals,
- McKean-Vlasov diffusions,
- Volterra equations,
- etc?

Example III: risk measure

- Let $X \in L^{1} \mathbb{P}$ be representative of a loss (with no atom for convenience) with c.d.f F_{x}.
- Let $\alpha \in(0,1], \alpha \simeq 1$ be a risk level. Then

$$
\operatorname{VaR}_{\alpha}(X):=\left(F_{X}\right)^{-1}(\alpha) \quad \text { and } \quad \operatorname{CVaR}_{\alpha}(X):=\mathbb{E}\left(X \mid X \geq \operatorname{Var}_{\alpha}(X)\right)
$$

- Rockafeller-Uryasev's representation of these two risk measures

$$
L_{\alpha, X}(\xi)=\xi+\frac{1}{1-\alpha} \mathbb{E}(X-\xi)^{+}
$$

satisfies

$$
\operatorname{Var}_{\alpha}(X)=\operatorname{argmin}_{\mathbb{R}} L_{\alpha, X} \quad \text { and } \quad \operatorname{CVaR}_{\alpha}(X)=\min _{\mathbb{R}} L_{\alpha, X}
$$

- As a consequence

$$
X \preceq_{i c v} Y \Longrightarrow L_{\alpha, X} \leq L_{\alpha, Y}
$$

so that

$$
\operatorname{CVaR}_{\alpha}(X) \leq \operatorname{CVaR}_{\alpha}(Y)
$$

- WARNING! Not true for the value-at-risk.

Characterization of convex ordering

Proposition

(a) Let $U, V \in L_{\mathbb{R}^{d}}^{1}(\mathbb{P})$. There is equivalence between

$$
U \preceq_{c v x} V
$$

and

$$
\forall f: \mathbb{R}^{d} \rightarrow \mathbb{R} \text { convex and Lipschitz continuous } \mathbb{E} f(U) \leq \mathbb{E} f(V)
$$

(b) Similar equivalence for $\preceq_{i c v}$ and $\preceq_{d c v}$ (when $d=q=1$).

The proof relies on the following lemma based on inf-convolution.

Lemma (Approximate convex functions from below)

Any convex function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ satisfies

$$
f=\lim _{n}^{\uparrow} f_{n}, \quad f_{n} \text { convex and Lipschitz continuous, } n \geq 1
$$

The functions f_{n} have the same monotonicity as f, if any.

Proof (lemma)

- We introduce the functions f_{n} defined through inf-convolution on \mathbb{R}^{d} by

$$
f_{n}(x):=\inf _{y \in \mathbb{R}^{d}}(f(y)+n|x-y|), n \geq 1 .
$$

One has by construction

$$
\forall n \geq 1, \quad f_{n} \leq f_{n+1} \leq f
$$

- $f_{n} \uparrow f$ in a stationary way: let us denote by $\nabla_{s} f(x)$ any subgradient of f at x. $\forall y \in \mathbb{R}^{d}, f(y)+n|y-x| \geq f(x)+\left\langle\nabla_{s} f(x) \mid y-x\right\rangle+n|y-x|$ by convexity of f

$$
\begin{aligned}
& \geq f(x)+\left(n-\left|\nabla_{s} f(x)\right|\right)|y-x| \\
& \geq f(x)
\end{aligned}
$$

Hence, $\forall n \geq\left|\nabla_{s} f(x)\right|, \quad f_{n}(x) \geq f(x)$ so that $f_{n}(x)=f(x)$.

- f_{n} is convex since, for $x, x^{\prime} \in \mathbb{R}^{d}, \lambda \in[0,1]$,

$$
\begin{aligned}
f_{n}\left(\lambda x+(1-\lambda) x^{\prime}\right) & \left.=\inf _{y, y^{\prime}} f\left(\lambda y+(1-\lambda) y^{\prime}\right)\right)+n\left|\lambda(x-y)+(1-\lambda)\left(x^{\prime}-y^{\prime}\right)\right| \\
& \leq \lambda \inf _{y}(f(y)+n|x-y|)+(1-\lambda) \inf _{y^{\prime}}\left(f\left(y^{\prime}\right)+n\left|x^{\prime}-y^{\prime}\right|\right) \\
& =\lambda f_{n}(x)+(1-\lambda) f_{n}\left(x^{\prime}\right) .
\end{aligned}
$$

Proof (\Leftarrow of proposition)

- f_{n} are n-Lipschitz continuous since

$$
\left|f_{n}(x)-f_{n}\left(x^{\prime}\right)\right| \leq \sup _{y \in \mathbb{R}^{d}}|n| x-y|-n| x^{\prime}-y| | \leq n\left|x-x^{\prime}\right| .
$$

- $f_{n}(x)=\inf _{y}(f(x+y)+n|y|)$ has the same monotonicity as $f \ldots$ if any. \square

Proof of the proposition.

- Assume f convex, then for every $n \geq 1, \mathbb{E} f_{n}(U) \leq \mathbb{E} f_{n}(V)$.
- The functions $f_{n}^{-}, n \geq\left|\nabla_{s} f(0)\right|$, are dominated since

$$
\begin{aligned}
\forall x, y \in \mathbb{R}^{d}, f_{n}(x) & \geq f(0)+\left\langle\nabla_{s} f(0) \mid y\right\rangle+n|y-x| \\
& \geq f(0)+|y|\left(n-\left|\nabla_{s} f(0)\right|\right)-n|x| \geq f(0)-n|x|
\end{aligned}
$$

- As $U, V \in L^{1}(\mathbb{P})$, one has by the monotone convergence theorem

$$
-\infty<\mathbb{E} f(U) \leq \mathbb{E} f(V) \leq+\infty
$$

Functional convex ordering: Definition

Assume $\mathcal{C}_{T}=\mathcal{C}\left([0, T], \mathbb{R}^{d}\right)$ is equipped with sup-norm $\|f\|_{\text {sup }}=\sup _{u \in[0, T]}|f(u)|$.

Definition

Let $X, Y:(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow \mathcal{C}\left([0, T], \mathbb{R}^{d}\right)$ be two integrable continuous processes such that $\mathbb{E}\left[\|X\|_{\text {sup }}+\|Y\|_{\text {sup }}\right]<+\infty$.
(a) Convex ordering. We say that X is dominated by Y for the convex ordering - denoted by $X \preceq_{c v x} Y$ - if, for every I.s.c. (for the $\|\cdot\|_{\text {sup }}$-norm topology) convex functional $F: \mathcal{C}\left([0, T], \mathbb{R}^{d}\right) \rightarrow \mathbb{R}$,

$$
\begin{equation*}
\mathbb{E} F(X) \leq \mathbb{E} F(Y) \tag{2}
\end{equation*}
$$

(b) Monotone convex ordering $(d=1)$. We say that X is dominated by Y for the increasing/decreasing convex ordering if (2) holds for every non-increasing/non-decreasing for the pointwise partial order on \mathcal{C} I.s.c. convex functional $F: \mathcal{C}([0, T], \mathbb{R}) \rightarrow \mathbb{R}$. These orderings are denoted by

$$
X \preceq_{i c v} Y \quad \text { and } \quad X \preceq_{d c v} Y \quad \text { respectively. }
$$

Characterization of functional convex ordering

- Do we have the same characterization by Lipschitz functionals ? Yesss!

Proposition

Let X, Y be two $\mathcal{C}\left([0, T], \mathbb{R}^{d}\right)$-valued r.v. (i.e. pathwise continuous stochastic processes) such that $\mathbb{E}\left[\|X\|_{\text {sup }}+\|Y\|_{\text {sup }}\right]<+\infty$.
(a) Convex order. Both statements are equivalent:

$$
X \preceq_{c v x} Y
$$

and
$\forall F \in \mathcal{C}\left([0, T], \mathbb{R}^{d}\right) \rightarrow \mathbb{R},\|\cdot\|_{\infty}$-Lipschitz continuous, $\mathbb{E} F(X) \leq \mathbb{E} F(Y)$.
(b) Pointwise monotonic convex ordering $(d=1)$. Similar equivalence for $X \preceq_{i c v} Y$ and $X \preceq_{d c v} Y$ with respect to pointwise non-decreasing (resp. non-increasing) Lipschitz convex functionals $F: \mathcal{C}\left([0, T], \mathbb{R}^{d}\right) \rightarrow \mathbb{R}$.

- The key is the following miracle-lemma!

Miracle lemma

Lemma (Quasi-subgradient)

$\left.{ }^{(a}\right)$ Let $(E,\|\cdot\|)$ be a normed vector space and let $F: E \rightarrow \mathbb{R}$ be an I.s.c. convex functional (for the norm topology).
For every $x \in E$ and every $a \in(-\infty, F(x))$; there exists $G=G_{x, a} \in E^{\prime}$ and $g=g_{x, a} \in \mathbb{R}$ such that

$$
\begin{aligned}
\text { (i) } & \forall u \in E, \quad G(u)+g \leq F(u), \\
\text { (ii) } & G(x)+g=a .
\end{aligned}
$$

[^2]- The linear forms $G_{x, a},-\infty<a<F(x)$ play the role of the sub gradient and the characterization in \mathbb{R}^{d} can be extended to this framework with $E=\mathcal{C}\left([0, T], \mathbb{R}^{d}\right)$.
- One shows likewise that $\mathbb{E} F(X) \in(-\infty,+\infty]$ and the characterization by Lipschitz continuous functionals.

Paradigm of convex ordering by Wasserstein approximation

- Let $\left(E,|\cdot|_{E}\right)$ be a Banach space and

$$
\mathcal{P}_{1}(E)=\left\{\mu \text { distribution on }(E, \mathcal{B} \text { or }(E)): \int_{E}|\xi|_{E} \mu(d \xi)<+\infty\right\}
$$

be the convex set of integrable probability measures on (E, \mathcal{B} or (E)) equipped with the (metric) topology of \mathcal{W}_{1} the Wasserstein/Monge-Kantorovich distance.

$$
\mathcal{W}_{1}(\mu, \nu)=\inf \left\{\int|x-y| m(d x, d y), m(d x, E)=\mu, m(E, d y)=\nu\right\}=\sup \left\{\int f d \mu-\int f d \nu,[f]_{\operatorname{Lip}} \leq 1\right\} .
$$

- Let X and Y be two E-valued random variables and let $\left(X_{n}\right)_{n \geq 1}$ and $\left(Y_{n}\right)_{n \geq 1}$ two sequences of E-valued random variables such that
(i) $\forall n \geq 1, \quad X_{n} \preceq_{c v x} Y_{n}$

$$
\text { (ii) } \mathcal{W}_{1}\left(\left[X_{n}\right],[X]\right)+\mathcal{W}_{1}\left(\left[Y_{n}\right],[Y]\right) \rightarrow 0 \text { as } n \rightarrow+\infty
$$

where $[X] \in \mathcal{P}_{1}(E)$ denotes the distribution of X. Then

$$
X \preceq_{c v x} Y .
$$

Proof of the paradigm

- Let $F: E \rightarrow \mathbb{R}$ be a Lipschitz continuous function. Assumption (i) implies that

$$
\mathbb{E} F\left(X_{n}\right) \leq \mathbb{E} F\left(Y_{n}\right), \quad n \geq 1 .
$$

- Then, by (ii) and the Monge-Kantorovich characterization of \mathcal{W}_{1}-distance

$$
\left|\mathbb{E} F\left(X_{n}\right)-\mathbb{E} F(X)\right| \leq[F]_{\text {Lip }} \mathcal{W}_{1}\left(\left[X_{n}\right],[X]\right) \rightarrow 0 \text { as } n \rightarrow+\infty,
$$

- Idem for Y_{n} and Y.
- Letting $n \rightarrow+\infty$ in the first inequality yields the conclusion.
\triangleright Application to $\left.E=\mathcal{C}\left([0, T], \mathbb{R}^{d}\right),\|\cdot\|_{\text {sup }}\right)$.
\triangleright Adaptation to partially-ordered Banach space is straightforward.
\triangleright Other extensions e.g. to metric vector spaces (think to Skorokhod topology on $\mathbb{D}\left([0, T], \mathbb{R}^{d}\right)$.)

Martingale (and scaled) Brownian diffusions

- If we want to compare on (I.s.c.) convex functionals $F: \mathcal{C}\left([0, T], \mathbb{R}^{d}\right) \rightarrow \mathbb{R}$,

$$
\mathbb{E} F(X) \quad ? \quad \mathbb{E} F(Y)
$$

where
$d X_{t}=\sigma\left(t, X_{t}\right) d W_{t}, X_{0} \Perp W$ versus $d Y_{t}=\theta\left(t, Y_{t}\right) d W_{t}, Y_{0} \Perp W, X_{0} \preceq_{c v x} Y_{0}$? in a higher dimensional setting:

- W q-dimensional B.M.,
$-\sigma(t, \cdot): \mathbb{R}^{d} \rightarrow \mathbb{M}_{d, q}(\mathbb{R})$
we need:
- a pre-order on matrices,
- the resulting notion of convexity for matrix-valued vector fields.

Martingale (and scaled) Brownian diffusions

- Pre-order \preceq on $\mathbb{M}_{d, q}(\mathbb{R})$: let $A, B \in \mathbb{M}_{d, q}(\mathbb{R})$.

$$
A \preceq B \quad \text { if } \quad B B^{*}-A A^{*} \in \mathcal{S}^{+}(d, \mathbb{R}) .
$$

[If $d=q=1, a \preceq b$ iff $|a| \leq|b|]$.

- \preceq-Convexity: $\sigma: \mathbb{R}^{d} \rightarrow \mathbb{M}_{d, q}$ is \preceq-convex if
$\forall x, y \in \mathbb{R}^{d}, \lambda \in[0,1]$, there exists $O_{\lambda, x}, O_{\lambda, y} \in \mathcal{O}(q, \mathbb{R})$ such that

$$
\sigma(\lambda x+(1-\lambda) y) \preceq \lambda \sigma(x) O_{\lambda, x}+(1-\lambda) \sigma(y) O_{\lambda, y}
$$

i.e.
$\sigma \sigma^{*}(\lambda x+(1-\lambda) y) \leq\left(\lambda \sigma(x) O_{\lambda, x}+(1-\lambda) \sigma(y) O_{\lambda, y}\right)\left(\lambda \sigma(x) O_{\lambda, x}+(1-\lambda) \sigma(y) O_{\lambda, y}\right)^{*}$

- $d=q=1$ with $O_{\lambda, x}=\operatorname{sign}(\sigma(x))$ this simply reads

$$
|\sigma| \text { convex. }
$$

- \Longrightarrow WARNING! Then, if $d=q=1: \sigma \preceq$-convex means $|\sigma|$ convex !!

Examples

- Let $\lambda_{k}: \mathbb{R} \rightarrow \mathbb{R}, k=1: q$ be Lipschitz functions such that $\left|\lambda_{k}\right|$ are all convex. Set

$$
\sigma(x):=A \operatorname{Diag}\left(\lambda_{1}(x), \ldots, \lambda_{q}(x)\right) O, A \in \mathbb{M}_{d, q}(\mathbb{R}), O \in \mathcal{O}(q, \mathbb{R})
$$

then σ is \preceq-convex.

- When $q=d, \sigma \preceq$-convex is equivalent to
$\sigma \sigma^{*}(\alpha x+(1-\alpha) y) \leq\left(\alpha \sqrt{\sigma \sigma^{*}}(x)+(1-\alpha) \sqrt{\sigma \sigma^{*}}(y)\right)\left(\alpha \sqrt{\sigma \sigma^{*}}(x)+(1-\alpha) \sqrt{\sigma \sigma^{*}}(y)\right)^{*}$.

Theorem (Strong martingale diffusion, P. 2016, Fadili-P. 2017, Jourdain-P. 2021)

Let $\sigma, \theta \in \operatorname{Lip}_{x}\left([0, T] \times \mathbb{R}^{d}, \mathbb{M}_{d, q}\right)$, W q-S.B.M.. Let $X^{(\sigma)}$ and $X^{(\theta)}$ be the unique strong solutions to

$$
\begin{aligned}
d X_{t}^{(\sigma)} & =\sigma\left(t, X_{t}^{(\sigma)}\right) d W_{t}, X_{0}^{(\sigma)} \in L^{1}(\mathbb{P}) \\
d X_{t}^{(\theta)} & =\theta\left(t, X_{t}^{(\theta)}\right) d W_{t}, X_{0}^{(\theta)} \in L^{1}(\mathbb{P}), \quad\left(W_{t}\right)_{t \in[0, T]} \text { standard B.M. }
\end{aligned}
$$

(a) If $X_{0}^{(\sigma)} \preceq_{c v x} X_{0}^{(\theta)}$ and

$$
\begin{cases}(i)_{\sigma} & \sigma(t, \cdot): \mathbb{R}^{d} \rightarrow \mathbb{M}_{d, q} \text { is } \preceq \text {-convex for every } t \in[0, T],[|\sigma(t, \cdot)| \text { convex }]_{d=q=1} \\ \text { or } & \\ \text { (i) } & \theta(t, \cdot): \mathbb{R}^{d} \rightarrow \mathbb{M}_{d, q} \text { is } \preceq \text {-convex for every } t \in[0, T],[|\theta(t, \cdot)| \text { convex }]_{d=q=1} \\ \text { and } & \\ \text { (ii) } & \sigma(t, \cdot) \preceq \theta(t, \cdot) \text { for every } t \in[0, T],\left[|\sigma(t, \cdot)| \leq|\theta(t, \cdot)|_{d=q=1}\right.\end{cases}
$$

then:

- for every l.s.c. convex $F: \mathcal{C}\left([0, T], \mathbb{R}^{d}\right) \rightarrow \mathbb{R}, \mathbb{E} F\left(X^{(\sigma)}\right) \leq \mathbb{E} F\left(X^{(\theta)}\right)$
- if $(i)_{\sigma}$ holds true, then one also have

$$
x \mapsto \mathbb{E} F\left(X^{(\sigma), x}\right) \text { is convex. }
$$

- By a functional inf-convolution argument, it suffices to consider $\|\cdot\|_{\text {sup-Lipschitz functionals }}$ [Jourdain-P., Fin. \& Stoch., '24].

Theorem (Weak Martingale diffusions, P. 2016, Fadili-P. 2017)

Let $\sigma, \theta \in \mathcal{C}_{\text {lin }_{x}, \text { unif }}\left([0, T] \times \mathbb{R}^{d}, \mathbb{M}_{d, q}\right), W^{(\sigma)}, W^{(\theta)} q-S . B . M$.. Let $X^{(\sigma)}$ and $X^{(\theta)}$ be the unique weak solutions to

$$
\begin{aligned}
d X_{t}^{(\sigma)} & =\sigma\left(t, X_{t}^{(\sigma)}\right) d W_{t}^{(\sigma)}, X_{0}^{(\sigma)} \in L^{1+\eta}(\mathbb{P}) \\
d X_{t}^{(\theta)} & =\theta\left(t, X_{t}^{(\theta)}\right) d W_{t}^{(\theta)}, X_{0}^{(\theta)} \in L^{1+\eta}(\mathbb{P}), \quad\left(W_{t}^{(\cdot)}\right)_{t \in[0, T]} \text { standard B.M. }
\end{aligned}
$$

(a) If $X_{0}^{(\sigma)} \preceq_{c v x} X_{0}^{(\theta)}$ and

$$
\begin{cases}(i)_{\sigma} & \sigma(t, .): \mathbb{R}^{d} \rightarrow \mathbb{M}_{d, q} \text { is } \preceq \text {-convex for every } t \in[0, T],[|\sigma(t, \cdot)| \text { convex }]_{d=q=1} \\ \text { or } & \\ \text { (i) } & \theta(t, .): \mathbb{R}^{d} \rightarrow \mathbb{M}_{d, q} \text { is } \preceq \text {-convex for every } t \in[0, T],[|\theta(t, \cdot)| \text { convex }]_{d=q=1} \\ \text { and } & \\ \text { (ii) } & \sigma(t, \cdot) \preceq \theta(t, \cdot) \text { for every } t \in[0, T],[|\sigma(t, \cdot)| \leq|\theta(t, \cdot)|]_{d=q=1}\end{cases}
$$ then:

- for every l.s.c. convex $F: \mathcal{C}\left([0, T], \mathbb{R}^{d}\right) \rightarrow \mathbb{R}, \mathbb{E} F\left(X^{(\sigma)}\right) \leq \mathbb{E} F\left(X^{(\theta)}\right)$
- if $(i)_{\sigma}$ holds true and F has $\|.\|_{\text {sup }}-$ polynomial growth,

$$
x \mapsto \mathbb{E} F\left(X^{(\sigma), x}\right) \text { is convex. }
$$

The 1D case (martingale case)

Theorem (P. 2016)

Let $\sigma, \theta \in \mathcal{C}_{\text {lin }_{x}, \text { unif }}([0, T] \times \mathbb{R}, \mathbb{R})$. Let $X^{(\sigma)}$ and $X^{(\theta)}$ be unique weak solutions to

$$
\begin{aligned}
d X_{t}^{(\sigma)} & =\sigma\left(t, X_{t}^{(\sigma)}\right) d W_{t}^{(\sigma)}, X_{0}^{(\sigma)} \in L^{1}(\mathbb{P}) \\
d X_{t}^{(\theta)} & =\theta\left(t, X_{t}^{(\theta)}\right) d W_{t}^{(\theta)}, \quad X_{0}^{(\theta)} \in L^{1}(\mathbb{P}),\left(W_{t}^{(\cdot)}\right)_{t \in[0, T]} \text { standard B.M. }
\end{aligned}
$$

(a) If $X_{0}^{(\sigma)} \preceq_{c v x} X_{0}^{(\theta)}$ and
then:

$$
\begin{cases}(i)_{\sigma} & |\sigma(t, .)|: \mathbb{R} \rightarrow \mathbb{R}_{+} \text {is convex for every } t \in[0, T], \\ \text { or } \\ \text { (i) } & |\theta(t, .)|: \mathbb{R} \rightarrow \mathbb{R}_{+} \text {is convex for every } t \in[0, T], \\ \text { and } \\ \text { (ii) } & |\sigma(t, \cdot)| \leq|\theta(t, \cdot)| \text { for every } t \in[0, T]\end{cases}
$$

- for every l.s.c. convex $F: \mathcal{C}\left([0, T], \mathbb{R}^{d}\right) \rightarrow \mathbb{R}, \mathbb{E} F\left(X^{(\sigma)}\right) \leq \mathbb{E} F\left(X^{(\theta)}\right)$
- if $(i)_{\sigma}$ holds true and F has $\|.\|_{\text {sup }}-p o l y n o m i a l ~ g r o w t h ~$

$$
x \mapsto \mathbb{E} F\left(X^{(\sigma), x}\right) \text { is convex. }
$$

Scaled/drifted martingale diffusions (extension to)

- The former theorems still hold true for

$$
\begin{aligned}
& X_{t}^{(\sigma)}=X_{0}^{(\sigma)}+\int_{0}^{t} \alpha(t)\left(X_{t}^{(\sigma)}+\beta(t)\right) d t+\int_{0}^{t} \sigma\left(t, X_{t}^{(\sigma)}\right) d W_{t}^{(\sigma)} \\
& X_{t}^{(\theta)}=X_{0}^{(\theta)}+\int_{0}^{t} \alpha(t)\left(X_{t}^{(\theta)}+\beta(t)\right) d t+\int_{0}^{t} \theta\left(t, X_{t}^{(\theta)}\right) d W_{t}^{(\theta)}
\end{aligned}
$$

where $\alpha(t) \in \mathbb{M}_{d, d}$ and $\beta(t) \in \mathbb{R}^{d}$ are Hölder continuous.

- Change of variable:

$$
\widetilde{X}_{t}^{(\sigma)}=e^{-\int_{0}^{t} \alpha(s) d s}\left(X_{t}^{(\sigma)}+\beta(t)\right), \text { etc. }
$$

- Finance: spot interest rate $\alpha(t)=r(t) \mathbf{1}$ and $\beta(t)=0$ since typical (risk-neutral) dynamics of traded assets read

$$
d S_{t}=r(t) S_{t} d t+S_{t} \sigma\left(S_{t},\right) d W_{t}
$$

Functional Hajek's Theorem on Monotone convex ordering

$\left({ }_{\mathrm{d}}(\mathrm{d}=\mathrm{q}=1)\right.$

$$
\begin{aligned}
& X_{t}^{(\sigma)}=X_{0}^{(\sigma)}+\int_{0}^{t} b_{1}\left(t, X_{t}^{(\sigma)}\right) d t+\int_{0}^{t} \sigma\left(t, X_{t}^{(\sigma)}\right) d W_{t}^{(\sigma)} \\
& X_{t}^{(\theta)}=X_{0}^{(\theta)}+\int_{0}^{t} b_{2}\left(t, X_{t}^{(\theta)}\right) d t+\int_{0}^{t} \theta\left(t, X_{t}^{(\theta)}\right) d W_{t}^{(\theta)}
\end{aligned}
$$

where all coefficients $b_{i}(t, \cdot), \sigma(t, \cdot), \theta(t, \cdot)$ are Lipschitz, uniformly in $t \in[0, T]$.

Theorem (Strong solution version)

Assume furthermore

$$
\begin{aligned}
&(i)_{\sigma}\left.\equiv b_{1}(t, \cdot) \text { and }|\sigma(t, \cdot)| \text { convex } \forall t \in[0, T]\right) \\
& \text { or } \\
&(i)_{\theta} \equiv b_{2}(t, \cdot) \text { and }|\theta(t, \cdot)| \text { convex } \forall t \in[0, T], \\
& \text { and } \quad(i i) \equiv b_{1}(t, \cdot) \leq b_{2}(t, \cdot) \&|\sigma(t, \cdot)| \leq|\theta(t, \cdot)|
\end{aligned}
$$

and $X_{0}^{(\sigma)} \leq_{i c v} X_{0}^{(\theta)}$.

Theorem (continued)

Then:

- for every l.s.c. convex, pointwise non-decreasing, $F: \mathcal{C}([0, T], \mathbb{R}) \rightarrow \mathbb{R}$,

$$
\mathbb{E} F\left(X^{(\sigma)}\right) \leq \mathbb{E} F\left(X^{(\theta)}\right)
$$

- if $(i)_{\sigma}$ holds true

$$
x \mapsto \mathbb{E} F\left(X^{(\sigma), x}\right) \text { is non-decreasing and convex. }
$$

- Hajek's original theorem only dealt with marginal convex ordering.
- Assume $(*)_{1}$. One defines for f non-decreasing and convex and $0<h<1 /\left[b_{1}\right]_{\text {Lip }}$

$$
Q_{h} f(x, u)=\mathbb{E} f\left(x+h b_{1}(x)+u Z\right)
$$

which is convex and nondecreasing in both x and u.

- Mimic the (yet unknown!) proof of the previous theorem.

Strategy (constructive)

- Time discretization (preferably) accessible to simulation: typically the Euler scheme.
- Propagate convexity (marginal or pathwise)
- Propagate comparison (marginal or pathwise)
- Transfer:
- By $L^{1}(\mathbb{P})\|\cdot\|_{\text {sup }}$-convergence (hence $\|\cdot\|_{\text {sup }} \mathcal{W}_{1}$-convergence) of the Euler scheme (strong solutions setting)
- by functional weak limit theorems "à la Jacod-Shiryaev" (weak solutions setting).

Step 1: discrete time ARCH models

- ARCH dynamics: Let $\left(Z_{k}\right)_{1 \leq k \leq n}$ be a sequence of independent, radial r.v. on $(\Omega, \mathcal{A}, \mathbb{P})$. Two ARCH models: $X_{0}, Y_{0} \in L^{1}(\mathbb{P})$,

$$
\begin{aligned}
X_{k+1} & =X_{k}+\sigma_{k}\left(X_{k}\right) Z_{k+1}, \\
Y_{k+1} & =Y_{k}+\theta_{k}\left(Y_{k}\right) Z_{k+1}, \quad k=0: n-1,
\end{aligned}
$$

where $\sigma_{k}, \theta_{k}: \mathbb{R} \rightarrow \mathbb{R}, k=0: n-1$ have linear growth.

Proposition (Propagation result)

If $\sigma_{k}, k=0=n-1$ are \preceq-convex with linear growth,

$$
X_{0}=x \quad \text { and } \quad \forall k \in\{0, \ldots, n-1\}, \quad \sigma_{k} \preceq \theta_{k},
$$

then, for every convex function $F:\left(\mathbb{R}^{d}\right)^{n+1} \rightarrow \mathbb{R}$ convex with linear growth

$$
x \longmapsto \mathbb{E} F\left(x, X_{1}^{\times} \ldots, X_{n}^{\times}\right) \quad \text { is convex. }
$$

Partial proof (marginal) with radial white noise

- $Z_{k} \sim \mathcal{N}\left(0, I_{q}\right), 1 \leq k \leq n$ or, more generally, $Z_{k} \sim O Z_{k}, \forall O \in \mathcal{O}(q, \mathbb{R})$.
- Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a convex function (with linear growth). Let

$$
P_{k}^{\sigma} f(x):=\mathbb{E} f\left(x+\sigma_{k-1}(x) Z_{k}\right)=\left[\mathbb{E} f\left(x+A Z_{k}\right)\right]_{\mid A=\sigma_{k-1}(x)}
$$

- Let $\mathbb{R}^{d} \times \mathbb{M}_{d, q} \ni(x, A) \mapsto Q_{k} f(x, A):=\mathbb{E} f\left(x+A Z_{k}\right), k=1: n$. It is convex, right $O(q, \mathbb{R})$-invariant and \preceq-non-decreasing in A by the starting example.
- $Q_{k} f(x, A O)=\mathbb{E} f\left(x+A O Z_{k}\right)=\mathbb{E} f\left(x+A Z_{k}\right)$,
- $\left.Q_{k} f(\lambda x+(1-\lambda) y, \lambda A+(1-\lambda) B)\right)=\mathbb{E} f\left(\lambda\left(x+A Z_{k}\right)+(1-\lambda)\left(y+B Z_{k}\right)\right)$

$$
\leq \lambda Q_{k} f(x, A)+(1-\lambda) Q_{k} f(y, B) \text { by convexity of } f .
$$

- If $A \preceq B$, then $A Z_{k} \preceq_{c v x} B Z_{k}$ and $f(x+\cdot)$ is convex.
- Hence if $x, y \in \mathbb{R}^{d}$ and $\lambda \in[0,1]$

$$
\begin{aligned}
P_{k}^{\sigma} f(\lambda x+(1-\lambda) y) & =Q_{k} f\left(\lambda x+(1-\lambda) y, \sigma_{k-1}(\lambda x+(1-\lambda) y)\right) \\
& \leq Q_{k} f\left(\lambda x+(1-\lambda) y, \lambda \sigma_{k-1}(x)+(1-\lambda) \sigma_{k-1}(y)\right) \\
Q_{k} \text { convex and } \geq 0 \text { operator } \longrightarrow & \leq \lambda Q_{k} f\left(x, \sigma_{k-1}(x)\right)+(1-\lambda) Q_{k} f\left(y, \sigma_{k-1}(y)\right) \\
& =\lambda P_{k}^{\sigma} f(x)+(1-\lambda) P_{k}^{\sigma} f(y) .
\end{aligned}
$$

- Hence the transition kernels P_{k}^{σ} propagate convexity:

$$
f \text { convex } \Longrightarrow P_{k}^{\sigma}(f) \text { convex. }
$$

- by an either forward or backward induction on k, one finally gets.

$$
x \longmapsto \mathbb{E} f\left(X_{n}^{\times}\right)=P_{1: n}^{\sigma} f(x):=P_{1}^{\sigma} \circ \cdots \circ P_{n}^{\sigma} f(x) \quad \text { is convex. }
$$

Proposition (Discrete time convex ordering result)

If all $\sigma_{k}, k=0: n-1$ or all $\theta_{k}, k=0: n-1$ are \preceq-convex with (at most) linear growth,

$$
X_{0} \preceq_{c v x} Y_{0} \quad \text { and } \quad \forall k \in\{0, \ldots, n-1\}, \quad \sigma_{k} \preceq \theta_{k},
$$

then

$$
\left(X_{0}, \ldots, X_{n}\right) \preceq_{c v x}\left(Y_{0}, \ldots, Y_{n}\right) .
$$

Partial proof (marginal) with radial white noise

- Assume e.g. that all σ_{k} are convex.
- Backward induction on k.
- For $k=n$. Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a convex function with linear growth.

$$
P_{n}^{\sigma} f(x)=Q_{n} f\left(x, \sigma_{n-1}(x)\right) \leq Q_{n} f\left(x, \theta_{n-1}(x)\right)=P_{n}^{\theta} f(x)
$$

by non-decreasing \preceq-monotony of Q_{n}.

- Assume $\underbrace{P_{k+1: n}^{\sigma} f}_{\text {convex }} \leq P_{k+1: n}^{\theta} f$. Then

$$
\forall x \in \mathbb{R}^{d}, \quad \mathbb{M}_{d, q} \ni A \longmapsto Q_{k}\left(P_{k+1: n}^{\sigma} f\right)(x, A) \quad \text { is } \preceq \text {-non-decreasing }
$$

so that

$$
\begin{aligned}
P_{k: n}^{\sigma} f(x)=Q_{k}\left(P_{k+1: n}^{\sigma} f\right)\left(x, \sigma_{k-1}(x)\right) & \stackrel{\downarrow}{\leq} Q_{k}\left(P_{k+1: n}^{\sigma} f\right)\left(x, \theta_{k-1}(x)\right) \\
Q_{k} \text { positive operator } \longrightarrow & \leq Q_{k}\left(P_{k+1: n}^{\theta} f\right)\left(x, \theta_{k-1}(x)\right) \\
& =P_{k: n}^{x, \theta} f(x) .
\end{aligned}
$$

- Hence, in particular for $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ Lipschitz and convex

$$
\mathbb{E} f\left(X_{n}^{\sigma}\right)=\mathbb{E} P_{1: n}^{\sigma} f\left(X_{0}\right) \leq \mathbb{E} P_{1: n}^{\sigma} f\left(Y_{0}\right) \leq \mathbb{E} P_{1: n}^{\theta} f\left(Y_{0}\right)=\mathbb{E} f\left(X_{n}^{\theta}\right) .
$$

Global convex ordering

- Same strategy
- But entirely backward.
- $q=d=1$ for simplicity.
\triangleright Dynamic programming: We introduce two martingales

$$
M_{k}=\mathbb{E}\left(F\left(X_{0: n}\right) \mid \mathcal{F}_{k}^{Z}\right) \text { and } N_{k}=\mathbb{E}\left(F\left(Y_{0: n}\right) \mid \mathcal{F}_{k}^{Z}\right), k=0: n
$$

and again the sequence of operators

$$
Q_{k}(f)(x, u)=\mathbb{E} f\left(x+u Z_{k}\right), u \in \mathbb{R}, k=1: n .
$$

Warning (for the mini-course)

- For convenience we will make the proof in a one-dimensional setting.
- Then a slightly revisited version of Jensen's inequality simplifies the communication.
- It follows (${ }^{4}$)

[^3]
Jensen's Inequality (a bit) revisited $=$ Key Lemma

Lemma (Jensen's Inequality revisited)

Let $Z:(\Omega, \mathcal{A}, \mathbb{P}) \rightarrow \mathbb{R}$ be an centered integrable r.v.: $Z \in L^{1}(\mathbb{P}), \mathbb{E} Z=0$.
\triangleright Let $f: \mathbb{R} \rightarrow \mathbb{R}$, convex, such that

$$
\forall x, u \in \mathbb{R}, Q f(x, u):=\mathbb{E} f(x+u Z) \text { is well-defined in } \mathbb{R} .
$$

Then $\operatorname{Qf}(x, \cdot)$ is convex, attains its minimum at 0 so that $Q f(x,$.$) is non-decreasing on \mathbb{R}_{+}$, non-increasing on \mathbb{R}_{-}.
\triangleright If $Z \sim-Z$ (symmetric distribution), then $Q f(x+\cdot)$ is an even function and

$$
\forall x \in \mathbb{R}, \forall a \in \mathbb{R}_{+}, \quad \sup _{|u| \leq a} Q f(x, u)=Q f(x, a) .
$$

Proof. The function Qf is clearly convex and by Jensen's Inequality

$$
Q f(x, u) \geq f(\mathbb{E}(x+u Z))=f(x+u \mathbb{E} Z)=f(x)=Q f(x, 0) .
$$

Hence $Q f$ is convex, $Q f(x+\cdot)$ attains its minimum at $u=0$ hence is non-increasing on \mathbb{R}_{-}and non-decreasing on \mathbb{R}_{+}.

- A (first) backward induction and the definition of the kernels Q_{k} imply

$$
M_{k}=\Phi_{k}\left(X_{0: k}\right) \quad \text { and } \quad N_{k}=\Psi_{k}\left(Y_{0: k}\right), \quad k=0, \ldots, n
$$

where $\Phi_{k}, \Psi_{k}: \mathbb{R}^{k+1} \rightarrow \mathbb{R}, k=0, \ldots, n$ are recursively defined by

$$
\begin{aligned}
\Phi_{n} & :=F \\
\Phi_{k}\left(x_{0: k}\right) & =\left[\mathbb{E} \Phi_{k+1}\left(x_{0: k}, x_{k}+u Z_{k+1}\right)\right]_{\mid u=\sigma_{k}\left(x_{k}\right)} \\
& :=\left(Q_{k+1} \Phi_{k+1}\left(x_{0: k}, \cdot\right)\right)\left(x_{k}, \sigma_{k}\left(x_{k}\right)\right), \quad k=0: n-1
\end{aligned}
$$

Likewise

$$
\Psi_{n}:=F, \quad \Psi_{k}\left(y_{0: k}\right):=\left(Q_{k+1} \Psi_{k+1}\left(y_{0: k}, \cdot\right)\right)\left(y_{k}, \theta_{k}\left(y_{k}\right)\right), k=0: n-1
$$

\triangleright Assume now that all functions σ_{k} are ≥ 0 and convex:

Lemma

$$
\begin{gathered}
\left(G: \mathbb{R}^{k+2} \rightarrow \mathbb{R} \text { convex }\right) \\
\Downarrow \\
\left(\left(x_{0: k}, u\right) \mapsto \mathbb{E} G\left(x_{0: k}, x_{k}+u Z_{k+1}\right)=Q_{k+1} G\left(x_{0: k}, \cdot\right)\left(x_{k}, u\right) \text { is convex... }\right) \\
\text { so that, by the revisited Jensen's Lemma, one has } \\
(i) u \mapsto Q_{k+1} G\left(x_{0: k}, \cdot\right)\left(x_{k}, u\right) \text { is } \downarrow \text { on }(-\infty, 0) \text { and } \uparrow \text { on }(0,+\infty) . \\
\&
\end{gathered}
$$

(ii) Propagation of the convexity in $x_{0: k}$.
\triangleright Assume now that all functions σ_{k} are ≥ 0 and convex:

Lemma

$$
\begin{gathered}
\left(G: \mathbb{R}^{k+2} \rightarrow \mathbb{R} \text { convex }\right) \\
\Downarrow \\
\left(\left(x_{0: k}, u\right) \mapsto \mathbb{E} G\left(x_{0: k}, x_{k}+u Z_{k+1}\right)=Q_{k+1} G\left(x_{0: k}, \cdot\right)\left(x_{k}, u\right) \text { is convex... }\right) \\
\text { so that, by the revisited Jensen's Lemma, one has } \\
(i) u \mapsto Q_{k+1} G\left(x_{0: k}, \cdot\right)\left(x_{k}, u\right) \text { is } \downarrow \text { on }(-\infty, 0) \text { and } \uparrow \text { on }(0,+\infty) . \\
\&
\end{gathered}
$$

(ii) Propagation of the convexity in $x_{0: k}$.

- (Second) backward induction \Longrightarrow all functions Φ_{k} are convex.
- (Third) backward induction $\Longrightarrow \Phi_{k} \leq \Psi_{k}, k=0: n-1$.

First note that $\Phi_{n}=\Psi_{n}=F$. If $\Phi_{k+1} \leq \Psi_{k+1}$, then

$$
\begin{aligned}
\Phi_{k}\left(x_{0: k}\right) & =\left(Q_{k+1} \Phi_{k+1}\left(x_{0, k}, \cdot\right)\right)\left(x_{k}, \sigma_{k}\left(x_{k}\right)\right) \\
& \leq\left(Q_{k+1} \Phi_{k+1}\left(x_{0: k}, \cdot\right)\right)\left(x_{k}, \theta_{k}\left(x_{k}\right)\right) \\
& \leq\left(Q_{k+1} \Psi_{k+1}\left(x_{0: k}, \cdot\right)\right)\left(x_{k}, \theta_{k}\left(x_{k}\right)\right)=\Psi_{k}\left(x_{0: k}\right)
\end{aligned}
$$

- When $k=0$

$$
\Phi_{0} \text { convex and } \Phi_{0}(x) \leq \Psi_{0}(x) \Longleftrightarrow \mathbb{E} F\left(X_{0: n}\right) \leq \mathbb{E} F\left(Y_{0: n}\right)
$$

so that
$\mathbb{E} F\left(X_{0: n}\right)=\mathbb{E} \Phi_{0}\left(X_{0}\right) \leq \mathbb{E} \Phi_{0}\left(Y_{0}\right) \leq \mathbb{E} \Psi_{0}\left(Y_{0}\right)=\mathbb{E} F\left(Y_{0: n}\right)$.

End of discrete time setting

\triangleright If all $\theta_{k} \geq 0$ and convex:
This time, one shows that:

- the functions Ψ_{k} are convex, $k=0, \ldots, n$
- $\Phi_{n} \leq \Psi_{n} \Longrightarrow \Phi_{k} \leq \Psi_{k}, k=0, \ldots, n-1$.

Remark. The discrete time setting has its own interest.

Step 2 of the proof: Back to continuous time

\triangleright Euler scheme(s): Discrete time Euler scheme with step $\frac{T}{n}$, starting at x is an ARCH model. For $X^{(\sigma)}$: for $k=0, \ldots, n-1$,

$$
\bar{X}_{t_{k+1}^{n}}^{(\sigma), n}=\bar{X}_{t_{k}^{n}}^{(\sigma), n}+\sigma\left(t_{k}^{n}, \bar{X}_{t_{k}^{n}}^{(\sigma), n}\right)\left(W_{t_{k+1}^{n}}-W_{t_{k}^{n}}\right), \bar{X}_{0}^{(\sigma), n}=x
$$

Set

$$
\begin{gathered}
Z_{k}=W_{t_{k}^{n}}-W_{t_{k-1}^{n}}, k=1, \ldots, n, \text { i.i.d. } \\
\Downarrow \\
\text { discrete time setting applies }
\end{gathered}
$$

Remark. Linear growth of σ and θ, implies if $X_{0}^{(\sigma)}$ and $X_{0}^{(\theta)} \in L^{p}(\mathbb{P})$ for $p=1+\eta>1$, then

$$
\sup _{n \geq 1}\left\|\sup _{t \in[0, T]}\left|\bar{X}_{t}^{(\sigma), n}\right|\right\|_{p}+\sup _{n \geq 1}\left\|\sup _{t \in[0, T]}\left|\bar{X}_{t}^{(\theta), n}\right|\right\|_{p} \leq C\left(1+\left\|X_{0}\right\|_{p}\right) .
$$

From discrete to continuous time

\triangleright Interpolation $(n \geq 1)$

- Piecewise affine interpolator defined by

$$
\begin{aligned}
& \forall x_{0: n} \in \mathbb{R}^{n+1}, \forall k=0, \ldots, n-1, \forall t \in\left[t_{k}^{n}, t_{k+1}^{n}\right], \\
& i_{n}\left(x_{0: n}\right)(t)=\frac{n}{T}\left(\left(t_{k+1}^{n}-t\right) x_{k}+\left(t-t_{k}^{n}\right) x_{k+1}\right)
\end{aligned}
$$

- $\widetilde{X}^{(\sigma), n}:=i_{n}\left(\left(\bar{X}_{t_{k}^{n}}^{(\sigma), n}\right)_{k=0: n}\right)=$ piecewise affine Euler scheme.

Figure: Interpolator

"Strong" solution setting

\triangleright Let $F: \mathcal{C}([0, T], \mathbb{R}) \rightarrow \mathbb{R}$ be a Lipschitz convex functional.

$$
\forall n \geq 1, \quad F_{n}: \mathbb{R}^{n+1} \ni x_{0: n} \longmapsto F_{n}\left(x_{0: n}\right):=F\left(i_{n}\left(x_{0: n}\right)\right) .
$$

- Step 1 (Discrete time): $F\left(\widetilde{X}^{(\sigma), n}\right)=F_{n}\left(\left(\bar{X}_{t_{k}^{n}}^{(\sigma), n}\right)_{k=0: n}\right)$ and

$$
F \text { convex } \Longrightarrow F_{n} \text { convex, } n \geq 1
$$

Discrete time result implies, since $\sigma\left(t_{k}^{n},.\right) \preceq \theta\left(t_{k}^{n},.\right)$,

$$
\mathbb{E} F\left(\widetilde{X}^{(\sigma), n}\right)=\mathbb{E} F_{n}\left(\left(\bar{X}_{t_{k}^{n}}^{(\sigma), n}\right)_{k=0: n}\right) \leq \mathbb{E} F_{n}\left(\left(\bar{X}_{t_{k}^{n}}^{(\theta), n}\right)_{k=0: n}\right)=\mathbb{E} F\left(\widetilde{X}^{(\theta), n}\right)
$$

- Step 2 (Transfer in the "strong" Lipschitz setting): We know that

$$
\mathcal{W}_{1}\left(\widetilde{X}^{(\sigma), n}, X^{(\sigma)}\right) \leq\| \| \widetilde{X}^{(\sigma), n}-X^{(\sigma)}\left\|_{\text {sup }}\right\|_{1} \rightarrow 0 \quad \text { as } n \rightarrow+\infty
$$

Hence if $F: \mathcal{C}\left([0, T], \mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ is $\|\cdot\|_{\text {sup }}$-Lipschitz

$$
\left|\mathbb{E} F\left(\widetilde{X}^{(\sigma), n}\right)-\mathbb{E} F\left(X^{(\sigma)}\right)\right| \leq[F]_{\operatorname{Lip}} \mathcal{W}_{1}\left(\widetilde{X}^{(\sigma), n}, X^{(\sigma)}\right) \rightarrow 0 \quad \text { as } n \rightarrow+\infty
$$

Idem for the $X^{(\theta)}$-diffusion, so that

$$
\mathbb{E} F\left(X^{(\sigma)}\right) \leq \mathbb{E} F\left(X^{(\theta)}\right)
$$

"Weak" diffusion setting

- Step 2bis (Transfer in the "weak" linear growth continuous setting): See e.g. [Jacod-Shiryaev's book $2^{\text {nd }}$ edition, Theorem 3.39, p.551] (${ }^{5}$).

$$
\widetilde{X}^{(\sigma), n} \stackrel{\mathcal{L}\left(\|\cdot\|_{\text {sup }}\right)}{\longrightarrow} X^{(\sigma)} \quad \text { and } \quad \widetilde{X}^{(\sigma), n} \stackrel{\mathcal{L}\left(\|\cdot\|_{\text {sup }}\right)}{ } X^{(\theta)} \quad \text { as } n \rightarrow+\infty .
$$

- We know that, as $\sigma(t, \cdot)$ and $\theta(t, \cdot)$ have linear growth

$$
\left\|\sup _{t \in[0, T]}\left|\widetilde{X}^{(\sigma), n}\right|\right\|_{1+\eta}+\left\|\sup _{t \in[0, T]}\left|\widetilde{X}^{(\theta), n}\right|\right\|_{1+\eta} \leq C_{\eta, T}\left(1+\left\|X_{0}\right\|_{1+\eta}\right)
$$

Hence, if F is $\|\cdot\|_{\text {sup }}$-Lipschitz, then $F\left(\widetilde{X}^{(\sigma), n}\right), n \geq 1$, is uniformly integrable so that

$$
\left.\mathbb{E} F\left(X^{(\sigma)}\right)=\lim _{n} \mathbb{E} F\left(\widetilde{X}^{(\sigma), n}\right) \quad \text { (idem for } X^{(\theta)}\right)
$$

- Hence $\quad \mathbb{E} F\left(X^{(\sigma)}\right) \leq \mathbb{E} F\left(X^{(\theta)}\right)$.

[^4]
[^0]: ${ }^{1}$ B. Jourdain, G. Pagès, Convex order, quantization and monotone approximations of ARCH models, Journal of Theoretical Probability, 35, (4), 2480-2517,2022

[^1]: ${ }^{2}$ Peacocks and Associated Martingales, with Explicit Constructions, Springer, 2011.

[^2]: ${ }^{\text {a See }}$ Lemma 7.5 in Aliprantis, Charalambos D. and Border, Kim C., Infinite dimensional Analysis, Springer, 2006.

[^3]: ${ }^{4}$ G. Pagès, Convex order for path-dependent derivatives: a dynamic programing approach, Séminaire de Probabilités, XLVIII, LNM 2168, Springer, Berlin, 33-96, 2016.

[^4]: ${ }^{5}$ Limit theorems for stochastic processes, Springer, 2010.

