"Weak" diffusion setting

Martingale (and scaled) Brownian diffusions

 Step 2bis (Transfer in the "weak" linear growth continuous setting): See e.g. [Jacod-Shiryaev's book 2nd edition, Theorem 3.39, p.551] (⁵).

$$\widetilde{X}^{(\sigma),n} \stackrel{\mathcal{L}(\|.\|_{\mathrm{sup}})}{\longrightarrow} X^{(\sigma)} \quad \mathrm{and} \quad \widetilde{X}^{(\sigma),n} \stackrel{\mathcal{L}(\|.\|_{\mathrm{sup}})}{\longrightarrow} X^{(\theta)} \quad \mathrm{as} \ n \to +\infty.$$

Functional limit theorem: ... to continuous time

• We know that, as $\sigma(t, \cdot)$ and $\theta(t, \cdot)$ have linear growth

$$\left\|\sup_{t\in[0,T]}|\widetilde{X}^{(\sigma),n}|\right\|_{1+\eta}+\left\|\sup_{t\in[0,T]}|\widetilde{X}^{(\theta),n}|\right\|_{1+\eta}\leq C_{\eta,T}(1+\|X_0\|_{1+\eta})$$

Hence, if F is $\|\cdot\|_{sup}$ -Lipschitz, then $F(\widetilde{X}^{(\sigma),n})$, $n \ge 1$, is uniformly integrable so that

$$\mathbb{E} F(X^{(\sigma)}) = \lim_{n} \mathbb{E} F(\widetilde{X}^{(\sigma),n})$$
 (idem for $X^{(\theta)}$).

• Hence
$$\mathbb{E} F(X^{(\sigma)}) \leq \mathbb{E} F(X^{(\theta)}).$$

⁵Limit theorems for stochastic processes, Springer, 2010.

51 / 124

Connection between convexity and convex ordering

- Convexity of $x \mapsto \mathbb{E} F(X^x)$ can be obtained as a by-product of the proof by "transferring" convexity property from discrete to continuous time...
- but also, a posteriori: in this diffusion framework

Convex ordering \implies Convexity .

• Let
$$x, y \in \mathbb{R}$$
, $\lambda \in [0, 1]$. One has

$$\delta_{\lambda x+(1-\lambda)y} \preceq_{cvx} \lambda \delta_x + (1-\lambda)\delta_y.$$

Assume $\sigma = \theta$. Let

 $X_0^{(\sigma)} = \lambda x + (1-\lambda)y \text{ and } \widetilde{X}_0^{(\sigma)} = \varepsilon x + (1-\varepsilon)y, \ \varepsilon \sim \mathcal{B}er(\{0,1\},\lambda) \perp W.$

• Then $\widetilde{X}_0^{(\sigma)} \sim \lambda \delta_x + (1 - \lambda) \delta_y$ and $\widetilde{X}^{(\sigma)} = \varepsilon X^x + (1 - \varepsilon) X^y$ and $\mathbb{E} \varepsilon = \lambda$ so that, for every l.s.c. convex functional $F : \mathcal{C}([0, T], \mathbb{R}^d) \to \mathbb{R},$ $\mathbb{E} F(X^{\lambda x + (1 - \lambda)y}) \leq \mathbb{E} F(\widetilde{X}^{(\sigma)}) = \lambda \mathbb{E} F(X^x) + (1 - \lambda) \mathbb{E} F(X^y).$

• Same result for monotone convex orders (see later on).

The Euler scheme provides a simulable approximation

which preserves convex order.

Application I : Local Volatility models (functional p.c.o.c).

• New notations ($\widetilde{\sigma}$, $\widetilde{\theta}$ denote now "true" volatility)

$$dS_t = rS_t dt + S_t \widetilde{\sigma}(t, S_t) dW_t, \ S_0 = s_0 > 0,$$

where $\widetilde{\sigma} : [0, T] \times \mathbb{R} \to \mathbb{R}_+$ is a bounded continuous function.

• (At least) the weak solution exists and satisfies (see also Feller's criterion . . .)

$$\widetilde{S}_t^{(\widetilde{\sigma})} := e^{-rt} S_t^{(\widetilde{\sigma})} = s_0 e^{\int_0^t \widetilde{\sigma}(s, S_s^{(\sigma)}) dB_s - \frac{1}{2} \int_0^t \widetilde{\sigma}^2(s, S_s^{(\sigma)}) ds} > 0.$$

• Idem for $\theta \rightsquigarrow \theta(t, x) = x \tilde{\theta}(t, x)$ (same drift $x \mapsto r x$ of course).

• We assume that

$$0 \leq \widetilde{\sigma} \leq \widetilde{\kappa} \leq \widetilde{\theta}$$

and $\forall t \in [0, T]$, $\kappa(t, \cdot) : x \mapsto x \widetilde{\kappa}(t, x)$ is convex on the whole real line.

A comparison/propagation result

Theorem (Extension of El Karoui et al. Theorem., P. 2016)

If there exists a function $\widetilde{\kappa} : [0, T] \times \mathbb{R}_+ \to \mathbb{R}_+$ such that

 $\kappa(t, \cdot) : x \mapsto x \widetilde{\kappa}(t, x)$ is a convex function on \mathbb{R}

satisfying

(a) Partitioning: $0 \leq \widetilde{\sigma}(t,.) \leq \widetilde{\kappa}(t,.) \leq \widetilde{\theta}(t,.)$ on $\mathbb{R}_+, t \in [0, T]$,

(b) Dominating:
$$|\widetilde{\sigma}(t,.)| \leq \widetilde{\theta}(t,.) = \widetilde{\kappa}(t,.), t \in [0, T].$$

Then

(i) For every every convex $F : C([0, T], \mathbb{R}_+) \to \mathbb{R}$ with polynomial growth

 $\mathbb{E} F(S^{(\widetilde{\sigma})}) \leq \mathbb{E} F(S^{(\widetilde{\theta})}) \in (-\infty, +\infty].$

(ii) If $\sigma(t,x) = x\widetilde{\sigma}(t,x)$ is convex for every $t \in [0, T]$, then

 $x \mapsto \mathbb{E} F(S^{(\tilde{\sigma}),x})$ is convex.

Ordre convexe fonctionnel

Figure: Left: flat partitioning. Right: flat bounding (El Karoui et al.).

- This theorem contains Carr et al. & Baker-Yor theorem(s).
- The method of proof applies to American style options, Lévy driven diffusions, stochastic integrals, etc (see P. 2016 and later on).
- Warning ! (1D-)Misltein scheme: does not propagate convexity.

Application II: Concave Local Vol. models (with A. Fadili)

- Concave Local Volatility (CLV) models $(\ni CEV)$: let
- $\sigma(x) = x \,\widetilde{\sigma}(x) > 0, \text{ concave } \uparrow \text{ on } (0, +\infty), \ \sigma(x) = 0, \ x \le 0, \text{ continuous.}$ $dS_t = \sigma(S_t) dW_t, \ S_0 = s_0 > 0,$

s.t. the (unique possible weak) solution satisfies $S_t \ge 0$, $t \in [0, T]$. • Example. (Discounted) CEV model (r = 0) [which hits 0 a.s... Ok]:

$$S_t = s_0 + \vartheta \int_0^t \sqrt{S_s} dW_s, \quad t \in [0, T].$$

• Then, for every fixed u > 0, the concavity property implies

$$\sigma(x) \leq (\sigma(u) + \sigma'(u)(x - u))_+, x \in \mathbb{R}_+$$

so that, if we set

$$dX_t^{(u)} = \left(\sigma(u) + \sigma'(u)(X_t^{(u)} - u)\right)_+ dW_t, \ X_0^{(u)} = s_0$$

then, for every convex vanilla payoff $\varphi:\mathbb{R}_+\to\mathbb{R}_+$

$$\mathbb{E}\,\varphi(S_{\mathcal{T}}) \leq \inf_{u>0} \mathbb{E}\,\varphi(X^{(u)}_{\tau})$$

Figure: Black-Scholes convex domination of a Local Volatility model.

Back to Black(-Scholes)

• Set $\xi(u) := \frac{\sigma'(u)}{\sigma(u)} - u > 0$ (by concavity). Hence

$$X_{t}^{(u)} + \xi(u) = \underbrace{s_{0} + \xi(u)}_{>0} + \int_{0}^{t} \underbrace{\sigma'(u)}_{\geq 0} \left(X_{s}^{(u)} + \xi(u)\right)^{+} dW_{s}.$$

By strong uniqueness, $X_t^{(u)} + \xi(u) = Y_t^{(u)}$ where $Y^{(u)}$ satisfies Black-Scholes dynamics

$$Y_t^{(u)} = Y_0^{(u)} + \sigma'(u) \int_0^t Y_s^{(u)} dW_s.$$

• Example: if $\varphi(x) = (x - K)_+$ is a vanilla Call payoff

$$\mathbb{E}\left(S_{T}-K\right)_{+}\leq\inf_{u>0}\operatorname{Call}_{BS}\left(s_{0}+\xi(u),K+\xi(u),\sigma'(u),0,T\right).$$

Proposition (Tractable upper-bound)

One has

(i)
$$u \mapsto \mathbb{E}(Y_{\tau}^{(u)} - K)_{+}$$
 is differentiable and $\frac{\partial}{\partial u}\mathbb{E}(Y_{\tau}^{(u)} - K)_{+} \ge 0$ on $[\max(s_{0}, K), +\infty)$

(*ii*) Hence

$$\mathbb{E}(S_{T}-K)_{+} \leq \min_{0 \leq u \leq \max(s_{0},K)} \operatorname{Call}_{BS}(s_{0}+\xi(u),K+\xi(u),\sigma'(u))$$

leading to a faster search for the argmin.

Practitioner's corner: – In fact u_{min} lies not far from s_0 and K.

– Exploration starting from $\frac{s_0+K}{2}$.

Martingale (and scaled) Brownian diffusions Concave local volatility models (with A. Fadili)

Back to 1*D*-models

Question: is convexity of σ always mandatory (e.g. in one dimension)?

At least for some specific functionals ?

Is convexity necessary ? $\sigma(t, x) = \sigma(x)$, d = q = 1

- We assume for a while that d = q = 1.
- One shows [Jourdain-P. '23] that (when d=1)

$$\sqrt{\frac{2}{\pi}}|\sigma(x)| = \lim_{t \to 0} \frac{1}{\sqrt{t}} \mathbb{E}|X_t^x - x| = \lim_{t \to 0} \frac{1}{\sqrt{t}} \mathbb{E}|X_t^x - X_0^x| = \lim_{t \to 0} \frac{1}{\sqrt{t}} \mathbb{E}F_t(X^x)$$

with $F_t(\alpha) = |\alpha(t) - \alpha(0)|$ an (only) 2-marginal convex functionals.

- As soon as convexity propagation for 2-marginal functionals holds true then $|\sigma|$ is convex !!
- Conclusion: The convexity assumption on either σ or ϑ is mandatory ... except, maybe, for 1-marginal convex order when d = q = 1.

A discrete time counterexample: back to ARCH

• Still with

$$X_{k+1}^{x} = X_{k}^{x} + \sigma_{k}(X_{k}^{x})Z_{k+1}, \ k = 0, n-1, \ X_{0} = x \in L^{1}(\mathbb{P}).$$

• Assume that, for every (Lipschitz) convex function $F : \mathbb{R}^2 \to \mathbb{R}$, $x \mapsto \mathbb{E} F(X_k, X_\ell)$ is convex.

• Then
$$x \mapsto \mathbb{E}|X_1^x - x|$$
 is convex i.e.

$$x \mapsto \mathbb{E}|\sigma_0(x)Z_1| = |\sigma_0(x)|\mathbb{E}|Z_1|$$
 is convex.

• Hence $x \mapsto |\sigma_0(x)|$ is convex.

1-marginal of 1D diffusion (after [El Karoui et al.]) Direct approach

• Back to standard 1D martingale diffusion where $\sigma \in C^{0,1}_{lin_x, Unif_t}([0, T] \times \mathbb{R})$

 $dX_t^{\times} = \sigma(t, X_t^{\times}) dW_t, \quad X_0^{\times} = x \in \mathbb{R}.$

• If (⁶) f is smooth then $\partial_x \mathbb{E} f(X_{\tau}^x) = \mathbb{E} f'(X_{\tau}^x) Y_{\tau}^{(x)}$, where $Y^{(x)}$ is the tangent process:

$$Y_t^{(x)} = \mathcal{E}\Big(\int_0^{\cdot} \sigma'_x(s, X_s^x) dW_s\Big)_t := \exp\Big(\int_0^t \sigma'_x(s, X_s^x) dW_s - \frac{1}{2}\int_0^t \sigma'_x(s, X_s^x)^2 ds\Big).$$

• Let $\mathbb{Q} = Y_{\tau}^{(x)} \cdot \mathbb{P}$, the probability on $(\Omega, \mathcal{A}, \mathbb{P})$ under which (Girsanov)

 $B_t = W_t - \int_0^t \sigma'_x(s, X_s^x) ds$ is a standard Q-Brownian motion.

• Then

$$X_t^x = x + \int_0^t \sigma \sigma'_x(s, X_s^x) ds + \int_0^t \sigma(s, X_s) dB_s$$

and

$$\partial_{\mathbf{X}}\mathbb{E} f(\mathbf{X}^{\mathbf{X}}_{\tau}) = \mathbb{E}_{\mathbb{Q}} f'(\mathbf{X}^{\mathbf{X}}_{\tau}).$$

⁶ see El Karoui et al. 1998, Robustness of the Black and Scholes formula, *Math. Fin.*

Direct approach: conclusion (d = 1)

• If $\sigma \sigma'_{\chi}$ is Lipschitz in space uniformly in time, then (⁷).

 \mathbb{Q} -a.s. $x \mapsto X_t^x$ is non-decreasing...

• Hence

 \mathbb{Q} -a.s. $x \mapsto f'(X_t^x)$ is non-decreasing...

• and so is

$$\partial_{X}\mathbb{E} f(X_{\tau}^{X}) = \mathbb{E}_{\mathbb{Q}} f'(X_{\tau}^{X}).$$

- Which ensures that $x \mapsto \mathbb{E} f(X_{\tau}^{x})$ is convex.
- Few comments:
 - \triangleright Free extension for free to any convex function using right derivative f'_r .
 - \triangleright Note that there is **no convexity assumption (!)** required on σ .

▷ One step beyond: the present proof is one-dimensional. Any hope when $d \ge 2$ to switch from $f(X_{\tau}^{\times}) \rightsquigarrow F((X_{t}^{\times})_{t \in [0, T]})$?

⁷ see Thm 3.7, chap. IX, Revuz-Yor, *Continuous martingales and Brownian motion*, Springer, 3rd ed. 1998

Martingale (and scaled) Brownian diffusions Back to 1D (Jourdain-P. '23, ArXiv) What about monotone convexity (in presence of a convex) drift) ?

• If *f* is smooth then

$$\partial_{X} \mathbb{E} f(X_{T}^{X}) = \mathbb{E} \Big[f'(X_{T}^{X}) \underbrace{e^{\int_{0}^{T} b_{X}'(s,X_{s}^{X})ds} Y_{T}^{(X)}}_{\text{``new'' tangent flow}} \Big] = \mathbb{E}_{\mathbb{Q}} \Big[f'(X_{T}^{X}) e^{\int_{0}^{T} b_{X}'(s,X_{s}^{X})ds} \Big]$$

with
$$X_t^x = x + \int_0^t (b + \sigma \sigma'_x)(s, X_s^x) ds + \int_0^t \sigma(s, X_s^x) dB_s.$$

 If f is convex non-decreasing and b(t, ·) is convex in x then f' is non-negative and non-decreasing and b'_x(t, ·) is non-decreasing. Hence

 $\partial_x \mathbb{E} f(X^x_{\tau})$ is non-negative non-decreasing

i.e. $x \mapsto \mathbb{E} f(X_{\tau}^{x})$ is is convex non-decreasing.

• b convex requested but still not σ !

A mouse hole ?

Figure: Who is the cat ? Who is the mouse ?

Smooth σ in 1D (d = q = 1): getting rid of convexity

- Assume $\sigma : \mathbb{R} \to \mathbb{R}_+ \ \mathcal{C}^2$, Lipschitz $(\|\sigma'\|_{\infty} < +\infty)$.
- True Euler operator, $Z \sim \mathcal{N}(0, 1)$:

$$Pf(x) = \mathbb{E} f(x + \sqrt{h}\sigma(x)Z).$$

• Assume w.l.g. (see later on) $f : \mathbb{R}^d \to \mathbb{R} \ \mathcal{C}^2$ and convex, with bounded derivatives

$$(Pf)''(x) = \mathbb{E} \left[f''(x + \sqrt{h\sigma(x)Z})(1 + \sqrt{h\sigma'(x)Z})^2 \right] \\ + \sqrt{h\sigma''(x)} \mathbb{E} \left[f'(x + \sqrt{h\sigma(x)Z})Z \right] \\ = \mathbb{E} \left[f''(x + \sqrt{h\sigma(x)Z})(1 + \sqrt{h\sigma'(x)Z})^2 \right] \\ + h\sigma\sigma''(x) \mathbb{E} \left[f''(x + \sqrt{h\sigma(x)Z}) \right] \quad [\text{Stein I.P.: } \mathbb{E}g'(Z) = \mathbb{E}g(Z)Z \right] \\ = \mathbb{E} \left[f''(x + \sqrt{h\sigma(x)Z}) \underbrace{\left((1 + \sqrt{h\sigma'(x)Z})^2 + h\sigma\sigma''(x) \right)}_{\text{always } \ge 0 \,\forall Z(\omega)??} \right].$$

• No ! But... If we truncate : $Z \rightsquigarrow Z^h = Z \mathbf{1}_{\{|Z| \le A_h\}}, Pf \rightsquigarrow \tilde{P}^h f$, then...

• Then, the same Stein-I.P. transform yields

$$(\tilde{P}^{h}f)''(x) = \mathbb{E}\left[f''(x+\sqrt{h}\sigma(x)Z^{h})\underbrace{\left((1+\sqrt{h}\sigma'(x)Z^{h})^{2}+h\left(1-e^{-\frac{1}{2}(A_{h}^{2}-(Z^{h})^{2})}\right)\mathbf{1}_{\{Z^{h}\neq0\}}\sigma\sigma''(x)\right)}_{\text{always} \ge 0 \ \forall \ Z^{h}(\omega)??}\right]$$

• YES !! If
$$A_h = A/\sqrt{h}$$
 with $A < \frac{1}{\|\sigma'\|_{\infty}}$ for $h = \frac{T}{n}$ small enough and
(S) σ^2 semi-convex ($\exists \lambda \ge 0$ s.t. $\sigma^2 + \lambda x^2$ convex) (3)

- It clearly extends the $|\sigma|$ convex case !
- This semi-convexity property cannot be relaxed at the truncated Euler scheme level.

 So we have proved: for every convex C²-function f with bounded derivatives

$$x \mapsto \tilde{P}^h f(x) = \mathbb{E} f(x + \sqrt{h\sigma(x)Z^h})$$
 is convex.

• *f* Lipschitz continuous and convex can be approximated by convolution: let

$$f_{\epsilon}(x) = \mathbb{E} f(x + \epsilon \zeta), \ \zeta \sim \mathcal{N}(0, 1).$$

• f_{ϵ} is convex, $\downarrow f$ as $\epsilon \downarrow 0$ and

$$f_{\epsilon}'(x) = \frac{1}{\epsilon} \mathbb{E} \left[(f(x + \epsilon\zeta) - f(x))\zeta \right] \text{ and } f_{\epsilon}''(x) = \frac{1}{\epsilon^2} \mathbb{E} \left[(f(x + \epsilon\zeta) - f(x))(\zeta^2 - 1) \right]$$

are both bounded.

• As $|f_{\epsilon}(x)| \leq |f(x)| + \epsilon \mathbb{E}|\zeta|$,

$$\tilde{P}^{h}f = \lim_{\epsilon \to 0} \stackrel{\downarrow}{\tilde{P}} f_{\epsilon}$$
 so that $\tilde{P}^{h}(f)$ is convex.

• We still have that $(x, u) \mapsto \tilde{Q}f(x) = \mathbb{E} f(x + uZ^h)$ is convex and non-decreasing in u on \mathbb{R}_+ (see Jensen's inequality revisited!).

- Let consider the truncated Euler scheme $\widetilde{X}^{h} = \widetilde{X}^{(\sigma),h}$ associated with step $h = \frac{T}{n}$ (and $t_{k}^{n} = \frac{kT}{n}$), i.e. $\widetilde{X}_{t_{k+1}^{n}}^{h} = \widetilde{X}_{t_{k}^{n}}^{h} + \sigma(t_{k}^{n}, \widetilde{X}_{t_{k}^{n}}^{h})Z_{k+1}^{h}, \quad \widetilde{X}_{0}^{h} = x$ with $Z_{k+1}^{h} = \sqrt{\frac{n}{T}} (W_{t_{k+1}^{n}} - W_{t_{k}^{n}}) \mathbf{1}_{\{|W_{t_{k+1}^{n}} - W_{t_{k}^{n}}| \leq A\}}.$
- This scheme satisfies the convex propagation and ordering properties.
- Does it converge strongly in L^p toward to the diffusion $X^{(\sigma)}$? If "yes" then we proved:

If $\sigma(t, \cdot)$ satisfies (S) uniformly in $t \in [0, T]$ or $\theta(t, \cdot)$ satisfies (S) uniformly in $t \in [0, T]$, if

 $0 \leq \sigma \leq \theta$ and $X_0^{(\sigma)} \preceq_{cvx} X_0^{(\theta)} \Longrightarrow \forall t \in [0, T], \quad X_t^{(\sigma)} \preceq_{cvx} X_t^{(\theta)}$ and, when $\sigma(t, \cdot)$ satisfies (S) uniformly in $t \in [0, T]$,

$$x \mapsto \mathbb{E} f(X^{(\sigma)}_{\tau})$$
 is convex.

• Extension to a new class of functionals, see later on (with B. Jourdain).

Proof of convergence of truncated Euler scheme

• Let $(\tilde{X}_{t_k}^h)$ be the truncated Euler scheme with step $h = \frac{T}{n}$ i.e. implemented with $Z_k^h := Z_k \mathbf{1}_{\{|Z_k| \le A/\sqrt{h}\}}, (Z_k)_{k=1:n}$ i.i.d. $\mathcal{N}(0,1)$. Then, by independence,

$$\mathbb{P}(\widetilde{X}^{h} \neq \overline{X}^{n}) = \mathbb{P}(\exists k \in 1 : n : |Z_{k}| \geq A/\sqrt{h})$$
$$\leq n \mathbb{P}(|Z| \geq A/\sqrt{h}).$$

• Using
$$\mathbb{P}(|Z| \ge x) \le e^{-\frac{x^2}{2}}$$
, $x > 0$, (and $h = \frac{T}{n}$)
 $\mathbb{P}(\widetilde{X}^h \ne \overline{X}^n) \le n e^{-\frac{An}{2T}} \rightarrow 0$ as $n \rightarrow +\infty$.

• As a consequence (...), if $X_0 \in L^{p'}(\mathbb{P})$, p' > p (can be relaxed by a more direct (hence tedious) approach and an equivariance argument)

$$\left\|\max_{k=0:n}\left|\widetilde{X}^h_{t_k}-\bar{X}^n_{t_k}
ight\|_p
ightarrow 0$$
 as $n
ightarrow+\infty.$

• The original proof can be adapted and finally the semi-convexity (S) assumption can be relaxed in continuous time.

A 1-marginal 1D result

Theorem (Jourdain-P. 2023)

Let $\sigma, \theta \in Lip_{x,unif_t}([0, T] \times \mathbb{R}, \mathbb{R})$. Let $X^{(\sigma)}$ and $X^{(\theta)}$ be the unique strong solutions to

$$dX_{t}^{(\sigma)} = \sigma(t, X_{t}^{(\sigma)}) dW_{t}^{(\sigma)}, X_{0}^{(\sigma)} \in L^{1}(\mathbb{P})$$

$$dX_{t}^{(\theta)} = \theta(t, X_{t}^{(\theta)}) dW_{t}^{(\theta)}, X_{0}^{(\theta)} \in L^{1}(\mathbb{P}), (W_{t}^{(\cdot)})_{t \in [0, T]} \text{ standard } B.M.$$

(a) If $X_{0}^{(\sigma)} \preceq_{cvx} X_{0}^{(\theta)}$ and

$$\begin{cases} (i)_{\sigma} \quad \sigma(t, .)^{2} : \mathbb{R} \to \mathbb{R}_{+} \text{ is semi-convex for every } t \in [0, T], \\ \text{or} \\ (i)_{\theta} \quad \theta(t, .)^{2} : \mathbb{R} \to \mathbb{R}_{+} \text{ is semi-convex for every } t \in [0, T], \\ \text{and} \\ (ii) \quad 0 \leq \sigma(t, \cdot) \leq \theta(t, \cdot) \text{ for every } t \in [0, T] \\ - \text{ for every convex } f : \mathbb{R} \to \mathbb{R}, \mathbb{E} f(X_{\tau}^{(\sigma)}) \leq \mathbb{E} f(X_{\tau}^{(\theta)}) \in (-\infty, +\infty] \\ - \text{ if } (i)_{\sigma} \text{ holds true } x \mapsto \mathbb{E} f(X_{\tau}^{(\sigma), x}) \text{ is convex.} \end{cases}$$

• Slightly (technically) improves the result by [El karoui et al.] ($\simeq \sigma(t, \cdot)$ semi-convex).

A 1-marginal 1D result improved

Theorem (Jourdain-P. 2023)

Let $\sigma, \theta \in Lip_{x,unif_t}([0, T] \times \mathbb{R}, \mathbb{R})$. Let $X^{(\sigma)}$ and $X^{(\theta)}$ be the unique strong solutions to

 $dX_t^{(\sigma)} = \sigma(t, X_t^{(\sigma)}) dW_t^{(\sigma)}, X_0^{(\sigma)} \in L^1(\mathbb{P})$ $dX_t^{(\theta)} = \theta(t, X_t^{(\theta)}) dW_t^{(\theta)}, X_0^{(\theta)} \in L^1(\mathbb{P}), (W_t^{(\cdot)})_{t \in [0, T]} \text{ standard } B.M.$ (a) If $X_0^{(\sigma)} \preceq_{cvx} X_0^{(\theta)}$ and $\begin{cases} (i)_{\sigma} & \varnothing \\ or \\ (i)_{\theta} & \varnothing \\ and \\ (ii) & 0 \leq \sigma(t, \cdot) \leq \theta(t, \cdot) \text{ for every } t \in [0, T] \end{cases}$ then: - for every convex $f : \mathbb{R} \to \mathbb{R}$, $\mathbb{E} f(X_{\tau}^{(\sigma)}) \leq \mathbb{E} f(X_{\tau}^{(\theta)}) \in (-\infty, +\infty]$ - if $(i)_{\sigma}$ holds true $x \mapsto \mathbb{E} f(X_{\tau}^{(\sigma),x})$ is convex. (b) It also works with diffusions sharing the same affine drift $b(t,x) = \alpha(t)x + \beta$.

• Significantly (technically) improves the result by [El karoui et al.] ($\simeq \sigma(t, \cdot)$

When the drift comes back into the game III (gentle reminder)

Theorem (Extended Hajek's Theorem, P. 2016, Sém. Prob. XLVIII)

Let σ , θ , b_1 , $b_2 \in C_{lin_x, Unif_t}([0, T] \times \mathbb{R}, \mathbb{R})$. Let $X^{(\sigma)}$ and $X^{(\theta)}$ be the unique weak solutions to

$$egin{array}{rcl} dX^{(\sigma)}_t&=&b_1(t,X^{(\sigma)}_t)dt+\sigma(t,X^{(\sigma)}_t)doldsymbol{W}^{(\sigma)}_t,\ X^{(\sigma)}_0\in L^{1+\eta}(\mathbb{P})\ dX^{(heta)}_t&=&b_2(t,X^{(heta)}_t)dt+ heta(t,X^{(heta)}_t)doldsymbol{W}^{(heta)}_t,\ X^{(heta)}_0\in L^{1+\eta}(\mathbb{P}), \end{array}$$

with $(W_t^{(\cdot)})_{t \in [0,T]}$ are a standard 1D B.M. If $(i)_{b_1,\sigma} \ b_1(t,.)$ and $\sigma(t,\cdot)$ convex, $t \in [0,T]$, $(\Rightarrow x-Lipschitz \ Unif_t)$ or

$$(i)_{b_2,\theta} \ b_2(t,.)$$
 and $\theta(t,\cdot)$ convex, $t \in [0, T]$.

Then, if $0 \leq \sigma(t, \cdot) \leq \theta(t, \cdot)$ and $X_0^{(\sigma)} \preceq_{icv} X_0^{(\theta)}$,

(a) For every $F : C([0, T], \mathbb{R}) \to \mathbb{R}$, convex, pointwise non-decreasing with $\| \cdot \|_{\sup}$ -polynomial growth (hence $\| \cdot \|_{\sup}$ -continuous)

 $\mathbb{E} F(X^{(\sigma)}) \leq \mathbb{E} F(X^{(\theta)}).$

(b) If $(i)_{b_1,\sigma}$ holds then $x \mapsto \mathbb{E} F(X^{(\sigma)})$ is convex.

Back to non-decreasing convex order (d = q = 1): revisiting Hajek's theorem

• Assume $f : \mathbb{R} \to \mathbb{R}$ is smooth convex and non-decreasing.

• If

$$Pf(x) = \mathbb{E} f(x + hb(t, x) + \sqrt{h\sigma(t, x)Z}), \quad Z \sim \mathcal{N}(0, 1)$$
with $b(t, \cdot)$ and $\sigma(t, \cdot)$ are uniformly Lipschitz then

$$(Pf)'(x) = \mathbb{E} \Big[f'(x + hb(t, x) + \sqrt{h\sigma(t, x)Z}) (1 + hb'(t, x) + \sqrt{h\sigma'_x(t, x)Z}) \Big].$$

$$\geq 0$$

• Note that

$$1 + hb'(t,x) + \sqrt{h}\sigma'_x(t,x)Z \ge 1 - h\|b'_x\|_{\sup} - \sqrt{h}\|\sigma'_x\|_{\sup}|Z|.$$

• Hence, if
$$0 < h < (2\|b'_x\|_{\sup}\|)^{-1}$$
 then
 $1 + hb'(t,x) + \sqrt{h}\sigma'_x(t,x)Z \ge 0$ on $\left\{|Z| \le \frac{1}{2\sqrt{h}\|\sigma'_x\|_{\sup}}\right\}$

• Etc, like before (the two ideas can be combined...).

When the drift comes back into the game III

Theorem (Extended Hajek's Theorem, Jourdain-P. 2023)

Let σ , θ , b_1 , $b_2 \in C_{lin_x}([0, T] \times \mathbb{R}, \mathbb{R})$. Let $X^{(\sigma)}$ and $X^{(\theta)}$ be the unique weak solutions to

$$\begin{aligned} dX_t^{(\sigma)} &= b_1(t, X_t^{(\sigma)})dt + \sigma(t, X_t^{(\sigma)})dW_t^{(\sigma)}, \ X_0^{(\sigma)} \in L^{1+\eta}(\mathbb{P}) \\ dX_t^{(\theta)} &= b_2(t, X_t^{(\theta)})dt + \theta(t, X_t^{(\theta)})dW_t^{(\theta)}, \ X_0^{(\theta)} \in L^{1+\eta}(\mathbb{P}), \end{aligned}$$
with $(W_t^{(\cdot)})_{t \in [0,T]}$ are a standard 1D B.M. If
 $i)_{b_1,\sigma} \ b_1(t, .) \ convex, \ t \in [0, T], \ and \ \varnothing$
or
 $i)_{b_2,\theta} \ b_2(t, .) \ convex, \ t \in [0, T] \ and \ \varnothing.$

Then, if $0 \leq \sigma(t, \cdot) \leq \theta(t, \cdot)$ and $X_0^{(\sigma)} \leq_{icv} X_0^{(\theta)}$,

(a) For every $F : C([0, T], \mathbb{R}) \to \mathbb{R}$, convex, pointwise non-decreasing with $\| \cdot \|_{\sup}$ -polynomial growth (hence $\| \cdot \|_{\sup}$ -continuous)

 $\mathbb{E} F(X^{(\sigma)}) \leq \mathbb{E} F(X^{(\theta)}).$

(b) If $(i)_{b_1,\sigma}$ holds then $x \mapsto \mathbb{E} F(X^{(\sigma)})$ is convex.

A first conclusion and provisional remarks on 1D setting

- Relaxing convexity in x of the diffusion coefficient $\sigma(t, x)$ can be seen as a second extension of Hajek's theorem (for diffusions with no drift).
- This result is deeply one dimensional and cannot be extended to higher dimension at a reasonable level of generality (to our best knowledge).
- The second results for marginal increasing convex ordering for diffusions having convex drifts " $b^{\sigma} \leq b^{\theta}$ " is essentially Hajek's.
- A combination of the two truncations is possible (in progress with B. Jourdain) and would be a first strict improvement of Hajek's theorem.
- Applications to local volatility models (like CEV) extending results by El Karoui-Jeanblanc-Shreve to continuous time path-dependent options.

Functional extension ? Directionally convex functionals

- A function $f : \mathbb{R}^d \to \mathbb{R}$ is *directionally convex* if
 - $\forall i, x_i \mapsto f(x_1, \ldots, x_i, \ldots, x_d)$ is convex
 - $\forall j, x_j \mapsto \partial_{x_i} f(x_1, \ldots, x_i, \ldots, x_d)$ is non-decreasing.

or, equivalently, f Is Borel measurable and

 $\forall x \in \mathbb{R}^m, \ \forall y, z \in \mathbb{R}^m_+, \ f(x+y+z) - f(x+y) - f(x+z) + f(x) \ge 0.$

A functional F : C([0, T], ℝ) → ℝ is directionally convex if it is measurable and

 $\forall x \in \mathcal{C}([0, T], \mathbb{R}), \forall y, z \in \mathcal{C}([0, T], \mathbb{R}_+),$ $F(x + y + z) - F(x + y) - F(x + z) + F(x) \ge 0.$

Theorem

The 1D version of both functional comparison-propagation theorems remains true (under standard Lipschitz but without convexity assumptions) for the class of continuous directionally convex functionals on $C([0, T], \mathbb{R})$ with r-polynomial growth if $X_0^{(\sigma)}$ and $X_0^{(\vartheta)} \in L^r(\mathbb{P})$.

Examples I (\mathbb{R}^d)

Examples II (functional)

• Smooth directionally convex functionals: if $F : C([0, T], \mathbb{R}) \to \mathbb{R}$ is C^2 , F is directionally convex iff

 $\forall x, u, v \in C([0, T], \mathbb{R}), \quad u, v \ge 0 \Longrightarrow D^2 F(x).(u, v) \ge 0$

• Let
$$\varphi$$
, $\Phi : \mathbb{R} \to \mathbb{R}$,

$$\forall x \in C([0, T], \mathbb{R}), \quad F(x) = \Phi\left(\int_0^T \varphi(x(s))ds\right).$$

- *F* is convex iff φ is convex and Φ is non-decreasing convex.
- F is directionally convex iff both φ and Φ are non-decreasing convex.

Extensions

This provides as systematic approach which successfully works with

- Jump diffusions,
- (Possibly) path-dependent American style options, (*Sém. Proba XLVIII*, 2016),
- **BSDE** (unfortunately without "Z" in the driver),
- McKean-Vlasov SDEs (with applications to MFG, with Y. Liu (AAP, 2023),
- Volterra equations (with application to rough volatility modeling, with B. Jourdain (Fin. & Stoch., 2024)),
- Stochastic control (a first on going work with C. Yeo) with application to swing option on gas
- . . .

Let's have a short look...

The case of jump diffusions

▷ Lévy process: Let $Z = (Z_t)_{t \in [0,T]}$ be a Lévy process with Lévy measure ν satisfying

•
$$\int_{0 < |z| \le 1} |z|^2 \nu(dz) < +\infty$$
 of course...
• $\int_{|z| \ge 1} |z|^p \nu(dz) < +\infty, \ p \in [1, +\infty)$ (hence $Z_t \in L^1(\mathbb{P}), \ t \in [0, T]$).
• $\mathbb{E} Z_1 = 0.$

Then

$$(Z_t)_{t \in [0,T]}$$
 is an centered \mathcal{F}^Z -martingale.

Jump diffusions

Theorem (P. 2016, *Séminaire de Proba XLVIII*, d = q = 1, "weak version", not yet updated $d, q \ge 1$ but in progress)

Let $\kappa_i \in C_{lin_x, unif_t}([0, T] \times \mathbb{R})$, i = 1, 2, be continuous functions Let $X^{(\kappa_i)} = (X_t^{(\kappa_i)})_{t \in [0, T]}$ be the diffusion processes, unique weak solutions to

$$dX_t^{(\kappa_i)} = \kappa_i(t, X_{t-}^{(\kappa_i)}) dZ_t, \ X_0^{(\kappa_i)} \in L^p(\mathbb{P}), \ i = 1, 2.$$

(a) Z_1 centered: Assume $\kappa = \kappa_1$ or κ_2 satisfies: $\forall t \in [0, T], \kappa(t, .)$ convex and that

 $0 \leq \kappa_1 \leq \kappa_2.$

(b) Z_1 radial: If $Z_1 \stackrel{\mathcal{L}}{=} -Z_1$, $|\kappa|$ is convex in x and κ_i satisfy

 $|\kappa_1| \le |\kappa_2|.$

(i) Let $F : \mathbb{D}([0, T], \mathbb{R}) \to \mathbb{R}$ be a convex Skorokhod-continuous functional with *r*-polynomial growth, r < p

 $\forall \alpha \in \mathbb{D}([0, T], \mathbb{R}), \quad |F(\alpha)| \leq C(1 + \|\alpha\|_{\sup}^r), \ 0 < r < p.$

(ii) If $\kappa_1(t, \cdot)$ convex, $t \in [0, T]$, then for everty F as above

 $x \mapsto \mathbb{E} F(X^{(\kappa_1),x})$ is convex.

Key argument when d = q = 1

- Discrete time approach is similar to Brownian diffusions
- Transfer phase is based on the Skorokhod functional weak convergence of the Euler scheme toward the martingale jump diffusion.
- Which in turn relies on functional weak convergence of stochastic integrals (see e.g. [Mémin-Jakubowski-P., *PTRF*, 1989]).
- A "strong" version with Lipschitz coefficients κ_i (uniformly in t) should work, possible without Skorokhod topology.
- Higher dimensions should work too if Z is radial (but not yet proved to our best knowledge).

Discrete time optimal stopping (Bermuda options)...

... of ARCH models in 1-dimension.

▷ Dynamics: Still... $(Z_k)_{1 \le k \le n}$ be a sequence of independent, (centered and) symmetric r.v.

$$\begin{array}{lll} X_{k+1} &=& X_k + \sigma_k(X_k) \, Z_{k+1}, \ X_0 \in L^1(\mathbb{P}) \\ Y_{k+1} &=& Y_k + \theta_k(Y_k) \, Z_{k+1}, & 0 \leq k \leq n-1, \ Y_0 \in L^1(\mathbb{P}) \end{array}$$

where σ_k , $\theta_k : \mathbb{R} \to \mathbb{R}$, k = 0, ..., n - 1 with (at most) linear growth.

Snell envelopes and Bermuda/American options

▷ Let $F_k : \mathbb{R}^{k+1} \to \mathbb{R}_+$, k = 0, ..., n be a sequence of non-negative *convex* (payoff) functions with *r*-polynomial growth for the sup norm.

▷ Let $\mathcal{F} = (\mathcal{F}_k)_{0 \le k \le n}$ be a filtration such that Z_k is \mathcal{F}_k -adapted and Z_k is independent of \mathcal{F}_{k-1} , k = 1, ..., n.

▷ Snell envelopes of the reward processes $(F_k(X_{0:k}))_{0 \le k \le n}$ and $(F_k(Y_{0:k}))_{0 \le k \le n}$

$$U_k = \mathbb{P}\text{-esssup}\Big\{\mathbb{E}\big(F_{\tau}(X_{0:\tau}) \,|\, \mathcal{F}_k\big), \, \tau \, \mathcal{F}\text{-stopping time}, \tau \geq k\Big\}$$

and

$$V_k = \mathbb{P}\text{-esssup}\Big\{\mathbb{E}\big(F_{\tau}(Y_{0:\tau}) \,|\, \mathcal{F}_k\big), \, \tau \; \mathcal{F}\text{-stopping time}, \tau \geq k\Big\}.$$

▷ These are the lowest super-martingales that dominate the reward processes.

Backward Dynamic programming Principle

Proposition (Backward Dynamic programming Principle (BDDP))

(a) The Snell envelope satisfies

$$U_n = F_n(X_{0:n}), \qquad U_k = \max (F_k(X_{0:k}), \mathbb{E}(U_{k+1} | \mathcal{F}_k)), \ k = 0: n-1.$$

(b) One has

$$U_k = u_k(X_{0:k})$$
 \mathbb{P} -a.s., $k = 0, ..., n-1,$

where the functions $u_k : \mathbb{R}^{k+1} \to \mathbb{R}_+$, k = 0 : n, satisfy the functional BDDP

$$u_n(x_{0;n}) = F_n(x_{0;n}), \quad u_k(x_{0:k}) = \max\left(F_k(x_{0:k}), Q_{k+1}u_{k+1}(x_{0:k}, x_k + .))(\sigma_k(x_k))\right)$$

$$k = 0, \dots, n-1.$$

 Propagation of the convexity: Note that (a, b) → max(a, b) is non-decreasing in a and b and "copy-paste" the proofs for a fixed functional using the "revisited" Jensen's Inequality.

Proposition

(a) Convex ordering. If, either

$$\left\{ egin{array}{ccc} (*)_{\sigma} & |\sigma_k| \ \textit{is convex for every } k = 0:n-1 \ or \ (*)_{ heta} & | heta_k| \ \textit{is convex for every } k = 0:n-1 \end{array}
ight.$$

and

$$|\sigma_k| \leq |\theta_k|, \ k = 0, \ldots, n-1$$

then,

$$u_k(x_{0:k}) \leq v_k(x_{0:k}), \ k = 0, \ldots, n.$$

(b) Convexity. If $(*)_{\sigma}$ holds then

$$x \mapsto u_k(x_{0:k})$$
 is a convex function on \mathbb{R}^{k+1}

In particular, if $X_0 \leq_{cvx} Y_0$ then $\mathbb{E} U_0 = \mathbb{E} u_0(X_0) \leq \mathbb{E} u_0(Y_0) \leq \mathbb{E} v_0(Y_0) = \mathbb{E} V_0$.

▷ Idem for $v_k : \mathbb{R}^{k+1} \to \mathbb{R}$ in connection with the $(\mathbb{P}, \mathcal{F})$ -Snell envelope V. ▷ Note that u_{k+1} convex still implies

 $\xi \mapsto (Q_{k+1}u_{k+1}(x_{0:k}, \cdot))(x_k, \xi)$ is non-decreasing on \mathbb{R}_+ .

▷ Comparison Principle ($|\sigma_k| \le |\theta_k|$): Backward induction to prove $u_k \le v_k$, k = 0: n (obvious if k = n).

Assume $u_{k+1} \leq v_{k+1}$, $k+1 \leq n$. For every $x_{0:k} \in \mathbb{R}^{k+1}$

$$u_{k}(x_{0:k}) \leq \max \left(F_{k}(x_{0:k}), (Q_{k+1}u_{k+1}(x_{0:k}, \cdot))(x_{k}, \theta_{k}(x_{k})) \right) \\ \leq \max \left(F_{k}((x_{0:k}), (Q_{k+1}v_{k+1}(x_{0:k}, \cdot))(x_{k}, \theta_{k}(x_{k})) \right) = v_{k}(x_{0:k}).$$

If k = 0, we get

. . .

$$\mathbb{E} U_0 = u_0(x) \leq v_0(x) = \mathbb{E} V_0.$$

Back to continuous time

▷ Let $F : [0, T] \times C([0, T], \mathbb{R}^d) \to \mathbb{R}_+$ be a Lipschitz continuous functional and the resulting American payoffs processes $(F(t, (X^{(\sigma)}))^t)_{t \in [0, T]}$ and $(F(t, (Y^{(\theta)})^t))_{t \in [0, T]}$.

 \triangleright Snell envelopes of the Euler schemes of martingale diffusions X and Y

$$U^{(n)} = \mathbb{P}\text{-}\mathsf{Snell}\big(F_k(\bar{X}^{(\sigma),n}_{0:k})_{k=0:n}\big) \quad V^{(n)} = \mathbb{P}\text{-}\mathsf{Snell}\big(F_k(\bar{Y}^{(\theta),n}_{0:k})_{k=0:n}\big).$$

 \triangleright Convergence: In the case of Brownian diffusions, it is a classical result (with convergence rates in fact, see *e.g.* (⁸) that

$$\left\|\max_{0\leq k\leq n}|U_k^{(n)}-U_{t_k^n}^X|\right\|_p\to 0 \text{ and } \left\|\max_{0\leq k\leq n}|V_k^{(n)}-V_{t_k^n}^Y|\right\|_p\to 0 \text{ as } n\to +\infty$$

▷ Etc (limit theorems).

⁸V. Bally-P. ('03), Error analysis of the quantization algorithm for obstacle problems, *Stochastic Processes & Their Applications*, 106(1), 1-40, 2003

▷ Conclusion: As usual...

Theorem (P. 2016)

Under former partitioning or dominating convexity assumptions on $\sigma(t, \cdot)$ and $\theta(t, \cdot)$, $F : C([0, T], \mathbb{R}) \to \mathbb{R}_+$ convex and continuous and $X_0^{(\sigma)} \preceq X_0^{(\theta)}$ one has

$$\mathbb{E} U_0^{X^{(\sigma)}} \leq \mathbb{E} V_0^{X^{(\theta)}}$$

and, if $\sigma(t, \cdot)$ is convex, $x \mapsto u_0(x) := \mathbb{E} U_0^{X^{(\sigma),x}}$ is convex.

Warning! No standard "réduites" at time t > 0, due to path-dependence. If F(t,x) = h(t,x(t)), then $u_t(x) \le v_t(x)$ for every $t \in [0, T]$ if $h(t, \cdot)$ is convex for every t and h*Lispchitz*.

Jump martingale diffusions: what makes problem?

▷ Discrete time step: Identical.

▷ From discrete to continuous time: Still the Euler scheme. But we have to make the Snell envelopes converge... How to proceed?

Filtration enlargement argument/trick

Let $(\mathcal{F}_t)_{t \in [0,T]}$ be a filtration and let Y be an $(\mathcal{F}_t)_{t \in [0,T]}$ -adapted càdlàg process defined on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ so that

$$\forall t \in [0, T], \quad \mathcal{F}_t^Y \subset \mathcal{F}_t$$

We introduce the so-called \mathcal{H} -assumption (on the filtration $(\mathcal{F}_t)_{t \in [0,T]}$):

$$(\mathcal{H}) \equiv \forall H \in \mathcal{F}_{\tau}^{Y}, \text{ bounded}, \mathbb{E}(H | \mathcal{F}_{t}) = \mathbb{E}(H | \mathcal{F}_{t}^{Y}) \mathbb{P}\text{-}a.s.$$

Example: $\mathcal{F}_t = \sigma(\mathcal{F}_t^Y, \Xi), \ \Xi \perp Y.$

Theorem (Lamberton-P., 1990)

 $(^{a}) \triangleright Let (X^{n})_{n \ge 1}$ be a sequence of quasi-left càdlàg processes defined on a probability spaces $(\Omega^{n}, \mathcal{F}^{n}, \mathbb{P}^{n})$ of (D)-class and satisfying the Aldous criterion. Let $(\tau_{n}^{*})_{n \ge 1}$ be a sequence of $(\mathcal{F}^{X^{n}}, \mathbb{P}^{n})$ -optimal stopping times. If $(X^{n})_{n \ge 1}$ is uniformly integrable and satisfies

 $X^n \xrightarrow{\mathcal{L}(Skor)} X, \mathbb{P}_X = \mathbb{P}$ probability measure on $(\mathbb{D}([0, T], \mathbb{R}), \mathcal{D}_T).$

▷ Non-degeneracy of $(\tau_n^*)_{n\geq 1}$: every limiting value \mathbb{Q} of $\mathcal{L}(X^n, \tau_n^*)$ on $\mathbb{D}([0, T], \mathbb{R}) \times [0, T]$ satisfies the (\mathcal{H}) property [...], then

$$\lim_{n} \mathbb{E}_{\mathbb{P}^{n}} U_{0}^{X^{n}} = \mathbb{E}_{\mathbb{P}} U_{0}^{X}.$$

▷ If the optimal stopping problem related to $(X, \mathbb{Q}, \mathcal{D}^{\theta})$ has a unique solution in distribution, say $\mu_{\tau^*}^*$, not depending on \mathbb{Q} , then $\tau_n^* \xrightarrow{[0,T]} \mu_{\tau^*}^*$.

^aSur l'approximation des réduites, Annales IHP B, 1990.

Theorem (P. 2016)

Under the usual assumptions on κ_i , i = 1, 2, the Lévy process $(Z_t)_{t \in [0,T]}$ (through Z_1) and the American payoffs $(F_t)_{t \in [0,T]}$ (convexity and polynomial growth) and the ordering of the starting values of the SDEs, then the Snell envelopes at time 0 associated to (F_t) and the jump diffusions $X^{(\kappa_i),\kappa}$, i = 1, 2, satisfy

 $\mathbb{E} U_0^{(1)} \leq \mathbb{E} V_0^{(1)}.$

In particular the resulting "réduites" (when both diffusions start from x) satisfy

 $u_0^{(\kappa_1)}(x) \leq u_0^{(\kappa_2)}(x)$

Moreover, if $\kappa_1(t, \cdot)$ si convex for every $t \in [0, T]$, then $x \mapsto u_t^{(\kappa_1)}(x)$ is convex.

All the efforts are focused on showing that the filtration enlargement assumption (\mathcal{H}) is satisfied by any limiting distribution \mathbb{Q} .

Ordre convexe fonctionnel

95 / 124