## "Weak" diffusion setting

- Step 2bis (Transfer in the "weak" linear growth continuous setting): See e.g. [Jacod-Shiryaev's book $2^{\text {nd }}$ edition, Theorem 3.39, p.551] ( ${ }^{5}$ ).

$$
\widetilde{X}^{(\sigma), n} \stackrel{\mathcal{L}\left(\|\cdot\|_{\text {sup }}\right)}{\longrightarrow} X^{(\sigma)} \quad \text { and } \quad \widetilde{X}^{(\sigma), n} \stackrel{\mathcal{L}\left(\|\cdot\|_{\text {sup }}\right)}{ } X^{(\theta)} \quad \text { as } n \rightarrow+\infty .
$$

- We know that, as $\sigma(t, \cdot)$ and $\theta(t, \cdot)$ have linear growth

$$
\left\|\sup _{t \in[0, T]}\left|\widetilde{X}^{(\sigma), n}\right|\right\|_{1+\eta}+\left\|\sup _{t \in[0, T]}\left|\widetilde{X}^{(\theta), n}\right|\right\|_{1+\eta} \leq C_{\eta, T}\left(1+\left\|X_{0}\right\|_{1+\eta}\right)
$$

Hence, if $F$ is $\|\cdot\|_{\text {sup }}$-Lipschitz, then $F\left(\widetilde{X}^{(\sigma), n}\right), n \geq 1$, is uniformly integrable so that

$$
\left.\mathbb{E} F\left(X^{(\sigma)}\right)=\lim _{n} \mathbb{E} F\left(\widetilde{X}^{(\sigma), n}\right) \quad \text { (idem for } X^{(\theta)}\right)
$$

- Hence $\quad \mathbb{E} F\left(X^{(\sigma)}\right) \leq \mathbb{E} F\left(X^{(\theta)}\right)$.

[^0]
## Connection between convexity and convex ordering

- Convexity of $x \mapsto \mathbb{E} F\left(X^{x}\right)$ can be obtained as a by-product of the proof by "transferring" convexity property from discrete to continuous time...
- but also, a posteriori: in this diffusion framework

$$
\text { Convex ordering } \Longrightarrow \text { Convexity. }
$$

- Let $x, y \in \mathbb{R}, \lambda \in[0,1]$. One has

$$
\delta_{\lambda x+(1-\lambda) y} \preceq_{c v x} \lambda \delta_{x}+(1-\lambda) \delta_{y} .
$$

Assume $\sigma=\theta$. Let

$$
X_{0}^{(\sigma)}=\lambda x+(1-\lambda) y \text { and } \widetilde{X}_{0}^{(\sigma)}=\varepsilon x+(1-\varepsilon) y, \varepsilon \sim \mathcal{B e r}(\{0,1\}, \lambda) \Perp W .
$$

- Then $\widetilde{X}_{0}^{(\sigma)} \sim \lambda \delta_{x}+(1-\lambda) \delta_{y}$ and $\widetilde{X}^{(\sigma)}=\varepsilon X^{x}+(1-\varepsilon) X^{y}$ and $\mathbb{E} \varepsilon=\lambda$ so that, for every I.s.c. convex functional $F: \mathcal{C}\left([0, T], \mathbb{R}^{d}\right) \rightarrow \mathbb{R}$, $\mathbb{E} F\left(X^{\lambda x+(1-\lambda) y}\right) \leq \mathbb{E} F\left(\widetilde{X}^{(\sigma)}\right)=\lambda \mathbb{E} F\left(X^{x}\right)+(1-\lambda) \mathbb{E} F\left(X^{y}\right)$.
- Same result for monotone convex orders (see later on).


# The Euler scheme provides a simulable approximation 

which preserves convex order.

## Application I : Local Volatility models (functional p.c.o.c).

- New notations ( $\widetilde{\sigma}, \widetilde{\theta}$ denote now "true" volatility)

$$
d S_{t}=r S_{t} d t+S_{t} \widetilde{\sigma}\left(t, S_{t}\right) d W_{t}, S_{0}=s_{0}>0,
$$

where $\widetilde{\sigma}:[0, T] \times \mathbb{R} \rightarrow \mathbb{R}_{+}$is a bounded continuous function.

- (At least) the weak solution exists and satisfies (see also Feller's criterion ...)

$$
\widetilde{S}_{t}^{(\widetilde{\sigma})}:=e^{-r t} S_{t}^{(\widetilde{\sigma})}=s_{0} e^{t_{0}^{t} \widetilde{\sigma}\left(s, S_{s}^{(\sigma)}\right) d B_{s}-\frac{1}{2} \int_{0}^{t} \widetilde{\sigma}^{2}\left(s, S S_{s}^{(\sigma)}\right) d s}>0 .
$$

- Idem for $\theta \rightsquigarrow \theta(t, x)=x \widetilde{\theta}(t, x)$ (same drift $x \mapsto r x$ of course).
- We assume that

$$
0 \leq \widetilde{\sigma} \leq \widetilde{\kappa} \leq \widetilde{\theta}
$$

and $\forall t \in[0, T], \kappa(t, \cdot): x \mapsto x \widetilde{\kappa}(t, x)$ is convex on the whole real line.

## A comparison/propagation result

## Theorem (Extension of Karoui et al. Theorem., P. 2016)

If there exists a function $\widetilde{\kappa}:[0, T] \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that

$$
\kappa(t, \cdot): x \mapsto x \widetilde{\kappa}(t, x) \text { is a convex function on } \mathbb{R}
$$

satisfying
(a) Partitioning: $0 \leq \widetilde{\sigma}(t,.) \leq \widetilde{\kappa}(t,.) \leq \widetilde{\theta}(t,$.$) on \mathbb{R}_{+}, t \in[0, T]$, or
(b) Dominating: $|\widetilde{\sigma}(t,).| \leq \widetilde{\theta}(t,)=.\widetilde{\kappa}(t, . \cdot), t \in[0, T]$.

## Then

(i) For every every convex $F: \mathcal{C}\left([0, T], \mathbb{R}_{+}\right) \rightarrow \mathbb{R}$ with polynomial growth

$$
\mathbb{E} F\left(S^{(\widetilde{\sigma})}\right) \leq \mathbb{E} F\left(S^{(\widetilde{\theta})}\right) \in(-\infty,+\infty]
$$

(ii) If $\sigma(t, x)=x \widetilde{\sigma}(t, x)$ is convex for every $t \in[0, T]$, then

$$
x \mapsto \mathbb{E} F\left(S^{(\widetilde{\sigma}), x}\right) \text { is convex. }
$$



Figure: Left: flat partitioning. Right: flat bounding (El Karoui et al.).

- This theorem contains Carr et al. \& Baker-Yor theorem(s).
- The method of proof applies to American style options, Lévy driven diffusions, stochastic integrals, etc (see P. 2016 and later on).
- Warning ! (1D-)Misltein scheme: does not propagate convexity.


## Application II: Concave Local Vol. models (with A. Fadili)

- Concave Local Volatility (CLV) models ( $\ni$ CEV): let
$\sigma(x)=x \widetilde{\sigma}(x)>0$, concave $\uparrow$ on $(0,+\infty), \sigma(x)=0, x \leq 0$, continuous.

$$
d S_{t}=\sigma\left(S_{t}\right) d W_{t}, S_{0}=s_{0}>0
$$

s.t. the (unique possible weak) solution satisfies $S_{t} \geq 0, t \in[0, T]$.

- Example. (Discounted) CEV model $(r=0)$ [which hits 0 a.s... . Ok]:

$$
S_{t}=s_{0}+\vartheta \int_{0}^{t} \sqrt{S_{s}} d W_{s}, \quad t \in[0, T]
$$

- Then, for every fixed $u>0$, the concavity property implies

$$
\sigma(x) \leq\left(\sigma(u)+\sigma^{\prime}(u)(x-u)\right)_{+}, x \in \mathbb{R}_{+}
$$

so that, if we set

$$
d X_{t}^{(u)}=\left(\sigma(u)+\sigma^{\prime}(u)\left(X_{t}^{(u)}-u\right)\right)_{+} d W_{t}, X_{0}^{(u)}=s_{0}
$$

then, for every convex vanilla payoff $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$

$$
\mathbb{E} \varphi\left(S_{T}\right) \leq \inf _{u>0} \mathbb{E} \varphi\left(X_{T}^{(u)}\right)
$$



Figure: Black-Scholes convex domination of a Local Volatility model.

## Back to Black(-Scholes)

- Set $\xi(u):=\frac{\sigma^{\prime}(u)}{\sigma(u)}-u>0$ (by concavity). Hence

$$
X_{t}^{(u)}+\xi(u)=\underbrace{s_{0}+\xi(u)}_{>0}+\int_{0}^{t} \underbrace{\sigma^{\prime}(u)}_{\geq 0}\left(X_{s}^{(u)}+\xi(u)\right)^{+} d W_{s}
$$

By strong uniqueness, $X_{t}^{(u)}+\xi(u)=Y_{t}^{(u)}$ where $Y^{(u)}$ satisfies Black-Scholes dynamics

$$
Y_{t}^{(u)}=Y_{0}^{(u)}+\sigma^{\prime}(u) \int_{0}^{t} Y_{s}^{(u)} d W_{s} .
$$

- Example: if $\varphi(x)=(x-K)_{+}$is a vanilla Call payoff

$$
\mathbb{E}\left(S_{T}-K\right)_{+} \leq \inf _{u>0} \operatorname{Call}_{B S}\left(s_{0}+\xi(u), K+\xi(u), \sigma^{\prime}(u), 0, T\right) .
$$

## Proposition (Tractable upper-bound)

One has
(i) $u \mapsto \mathbb{E}\left(Y_{T}^{(u)}-K\right)_{+}$is differentiable and $\frac{\partial}{\partial u} \mathbb{E}\left(Y_{T}^{(u)}-K\right)_{+} \geq 0$ on $\left[\max \left(s_{0}, K\right),+\infty\right)$
(ii) Hence

$$
\mathbb{E}\left(S_{T}-K\right)_{+} \leq \min _{0 \leq u \leq \max \left(s_{0}, K\right)} \operatorname{Call}_{B S}\left(s_{0}+\xi(u), K+\xi(u), \sigma^{\prime}(u)\right)
$$

leading to a faster search for the argmin.

Practitioner's corner: - In fact $u_{\text {min }}$ lies not far from $s_{0}$ and $K$.

- Exploration starting from $\frac{s_{0}+K}{2}$.


## Back to $1 D$-models

Question: is convexity of $\sigma$ always mandatory (e.g. in one dimension)?
At least for some specific functionals ?

## Is convexity necessary ? $\sigma(t, x)=\sigma(x), d=q=1$

- We assume for a while that $d=q=1$.
- One shows [Jourdain-P. '23] that (when $d=1$ )
$\sqrt{\frac{2}{\pi}}|\sigma(x)|=\lim _{t \rightarrow 0} \frac{1}{\sqrt{t}} \mathbb{E}\left|X_{t}^{x}-x\right|=\lim _{t \rightarrow 0} \frac{1}{\sqrt{t}} \mathbb{E}\left|X_{t}^{x}-X_{0}^{x}\right|=\lim _{t \rightarrow 0} \frac{1}{\sqrt{t}} \mathbb{E} F_{t}\left(X^{x}\right)$
with $F_{t}(\alpha)=|\alpha(t)-\alpha(0)|$ an (only) 2-marginal convex functionals.
- As soon as convexity propagation for 2-marginal functionals holds true then $|\sigma|$ is convex !!
- Conclusion: The convexity assumption on either $\sigma$ or $\vartheta$ is mandatory ... except, maybe, for 1-marginal convex order when $d=q=1$.


## A discrete time counterexample: back to ARCH

- Still with

$$
X_{k+1}^{\times}=X_{k}^{\times}+\sigma_{k}\left(X_{k}^{\times}\right) Z_{k+1}, k=0, n-1, X_{0}=x \in L^{1}(\mathbb{P}) .
$$

- Assume that, for every (Lipschitz) convex function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$, $x \mapsto \mathbb{E} F\left(X_{k}, X_{\ell}\right)$ is convex.
- Then $x \mapsto \mathbb{E}\left|X_{1}^{x}-x\right|$ is convex i.e.

$$
x \longmapsto \mathbb{E}\left|\sigma_{0}(x) Z_{1}\right|=\left|\sigma_{0}(x)\right| \mathbb{E}\left|Z_{1}\right| \quad \text { is convex. }
$$

- Hence $x \mapsto\left|\sigma_{0}(x)\right|$ is convex.


## 1-marginal of $1 D$ diffusion (after [El Karoui et al.]) Direct approach

- Back to standard 1D martingale diffusion where $\sigma \in \mathcal{C}_{\text {lin }_{x}, U n i f_{t}}^{0,1}([0, T] \times \mathbb{R})$

$$
d X_{t}^{\times}=\sigma\left(t, X_{t}^{x}\right) d W_{t}, \quad X_{0}^{\times}=x \in \mathbb{R}
$$

- If $\left({ }^{6}\right) f$ is smooth then $\partial_{x} \mathbb{E} f\left(X_{T}^{\times}\right)=\mathbb{E} f^{\prime}\left(X_{T}^{\times}\right) Y_{T}^{(x)}$, where $Y^{(x)}$ is the tangent process:
$Y_{t}^{(x)}=\mathcal{E}\left(\int_{0}^{\cdot} \sigma_{x}^{\prime}\left(s, X_{s}^{x}\right) d W_{s}\right)_{t}:=\exp \left(\int_{0}^{t} \sigma_{x}^{\prime}\left(s, X_{s}^{x}\right) d W_{s}-\frac{1}{2} \int_{0}^{t} \sigma_{x}^{\prime}\left(s, X_{s}^{x}\right)^{2} d s\right)$.
- Let $\mathbb{Q}=Y_{T}^{(x)} \cdot \mathbb{P}$, the probability on $(\Omega, \mathcal{A}, \mathbb{P})$ under which (Girsanov)

$$
B_{t}=W_{t}-\int_{0}^{t} \sigma_{x}^{\prime}\left(s, X_{s}^{\times}\right) d s \quad \text { is a standard } \mathbb{Q} \text {-Brownian motion. }
$$

- Then

$$
X_{t}^{x}=x+\int_{0}^{t} \sigma \sigma_{x}^{\prime}\left(s, X_{s}^{x}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d B_{s}
$$

and

$$
\partial_{x} \mathbb{E} f\left(X_{T}^{x}\right)=\mathbb{E}_{\mathbb{Q}} f^{\prime}\left(X_{T}^{x}\right)
$$

[^1]
## Direct approach: conclusion $(d=1)$

- If $\sigma \sigma_{x}^{\prime}$ is Lipschitz in space uniformly in time, then $\left({ }^{7}\right)$.

$$
\mathbb{Q} \text {-a.s. } \quad x \mapsto X_{t}^{x} \quad \text { is non-decreasing } \ldots
$$

- Hence

$$
\mathbb{Q} \text {-a.s. } \quad x \mapsto f^{\prime}\left(X_{t}^{x}\right) \quad \text { is non-decreasing... }
$$

- and so is

$$
\partial_{x} \mathbb{E} f\left(X_{T}^{x}\right)=\mathbb{E}_{\mathbb{Q}} f^{\prime}\left(X_{T}^{x}\right)
$$

- Which ensures that $x \mapsto \mathbb{E} f\left(X_{T}^{x}\right)$ is convex.
- Few comments:
$\triangleright$ Free extension for free to any convex function using right derivative $f_{r}^{\prime}$.
$\triangleright$ Note that there is no convexity assumption (!) required on $\sigma$.
$\triangleright$ One step beyond: the present proof is one-dimensional. Any hope when $d \geq 2$ to switch from $f\left(X_{T}^{x}\right) \rightsquigarrow F\left(\left(X_{t}^{x}\right)_{t \in[0, T]}\right)$ ?

[^2]
## What about monotone convexity (in presence of a convex) drift) ?

- If $f$ is smooth then
$\partial_{x} \mathbb{E} f\left(X_{T}^{\times}\right)=\mathbb{E}[f^{\prime}\left(X_{T}^{\times}\right) \underbrace{e^{\int_{0}^{T} b_{x}^{\prime}\left(s, X_{s}^{\times}\right) d s} Y_{T}^{(x)}}_{\text {"new" tangent flow }}]=\mathbb{E}_{\mathbb{Q}}\left[f^{\prime}\left(X_{T}^{\times}\right) e^{\int_{0}^{T} b_{x}^{\prime}\left(s, X_{s}^{\times}\right) d s}\right]$
with $\quad X_{t}^{\times}=x+\int_{0}^{t}\left(b+\sigma \sigma_{x}^{\prime}\right)\left(s, X_{s}^{\times}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}^{\times}\right) d B_{s}$.
- If $f$ is convex non-decreasing and $b(t, \cdot)$ is convex in $x$ then $f^{\prime}$ is non-negative and non-decreasing and $b_{x}^{\prime}(t, \cdot)$ is non-decreasing. Hence

$$
\partial_{x} \mathbb{E} f\left(X_{T}^{\times}\right) \quad \text { is non-negative non-decreasing }
$$

i.e. $x \mapsto \mathbb{E} f\left(X_{T}^{x}\right)$ is is convex non-decreasing.

- $b$ convex requested but still not $\sigma$ !


Figure: Who is the cat ? Who is the mouse ?

## Smooth $\sigma$ in $1 D(d=q=1)$ : getting rid of convexity

- Assume $\sigma: \mathbb{R} \rightarrow \mathbb{R}_{+} \mathcal{C}^{2}$, Lipschitz $\left(\left\|\sigma^{\prime}\right\|_{\infty}<+\infty\right)$.
- True Euler operator, $Z \sim \mathcal{N}(0,1)$ :

$$
\operatorname{Pf}(x)=\mathbb{E} f(x+\sqrt{h} \sigma(x) Z)
$$

- Assume w.l.g. (see later on) $f: \mathbb{R}^{d} \rightarrow \mathbb{R} \mathcal{C}^{2}$ and convex, with bounded derivatives

$$
\begin{aligned}
(P f)^{\prime \prime}(x)= & \mathbb{E}\left[f^{\prime \prime}(x+\sqrt{h} \sigma(x) Z)\left(1+\sqrt{h} \sigma^{\prime}(x) Z\right)^{2}\right] \\
& \quad+\sqrt{h} \sigma^{\prime \prime}(x) \mathbb{E}\left[f^{\prime}(x+\sqrt{h} \sigma(x) Z) Z\right] \\
= & \mathbb{E}\left[f^{\prime \prime}(x+\sqrt{h} \sigma(x) Z)\left(1+\sqrt{h} \sigma^{\prime}(x) Z\right)^{2}\right] \\
& +h \sigma \sigma^{\prime \prime}(x) \mathbb{E}\left[f^{\prime \prime}(x+\sqrt{h} \sigma(x) Z)\right] \quad\left[\text { Stein I.P.: } \mathbb{E} g^{\prime}(Z)=\mathbb{E} g(Z) Z\right] \\
= & \mathbb{E}[f^{\prime \prime}(x+\sqrt{h} \sigma(x) Z) \underbrace{\left(\left(1+\sqrt{h} \sigma^{\prime}(x) Z\right)^{2}+h \sigma \sigma^{\prime \prime}(x)\right)}_{\text {always } \geq 0 \forall Z(\omega) ? ?}] .
\end{aligned}
$$

- No! But... If we truncate $: Z \rightsquigarrow Z^{h}=Z 1_{\left\{|Z| \leq A_{h}\right\}}$, $\operatorname{Pf} \rightsquigarrow \tilde{P}^{h} f$, then...
- Then, the same Stein-I.P. transform yields

$$
\left(\tilde{P}^{h} f\right)^{\prime \prime}(x)
$$

$$
=\mathbb{E}[f^{\prime \prime}\left(x+\sqrt{h} \sigma(x) Z^{h}\right) \underbrace{\left(\left(1+\sqrt{h} \sigma^{\prime}(x) Z^{h}\right)^{2}+h\left(1-e^{-\frac{1}{2}\left(A_{h}^{2}-\left(Z^{h}\right)^{2}\right)}\right) \mathbf{1}_{\left\{Z^{h} \neq 0\right\}} \sigma \sigma^{\prime \prime}(x)\right)}_{\text {always } \geq 0 \forall Z^{h}(\omega) ? ?}]
$$

- YES !! If $A_{h}=A / \sqrt{h}$ with $A<\frac{1}{\left\|\sigma^{\prime}\right\|_{\infty}}$ for $h=\frac{T}{n}$ small enough and

$$
\begin{equation*}
(\mathcal{S}) \quad \sigma^{2} \text { semi-convex }\left(\exists \lambda \geq 0 \text { s.t. } \sigma^{2}+\lambda x^{2} \text { convex }\right) \tag{3}
\end{equation*}
$$

- It clearly extends the $|\sigma|$ convex case!
- This semi-convexity property cannot be relaxed at the truncated Euler scheme level.
- So we have proved: for every convex $\mathcal{C}^{2}$-function $f$ with bounded derivatives

$$
x \mapsto \tilde{P}^{h} f(x)=\mathbb{E} f\left(x+\sqrt{h} \sigma(x) Z^{h}\right) \text { is convex. }
$$

- $f$ Lipschitz continuous and convex can be approximated by convolution: let

$$
f_{\epsilon}(x)=\mathbb{E} f(x+\epsilon \zeta), \zeta \sim \mathcal{N}(0,1)
$$

- $f_{\epsilon}$ is convex, $\downarrow f$ as $\epsilon \downarrow 0$ and

$$
f_{\epsilon}^{\prime}(x)=\frac{1}{\epsilon} \mathbb{E}[(f(x+\epsilon \zeta)-f(x)) \zeta] \text { and } f_{\epsilon}^{\prime \prime}(x)=\frac{1}{\epsilon^{2}} \mathbb{E}\left[(f(x+\epsilon \zeta)-f(x))\left(\zeta^{2}-1\right)\right]
$$

are both bounded.

- As $\left|f_{\epsilon}(x)\right| \leq|f(x)|+\epsilon \mathbb{E}|\zeta|$,

$$
\tilde{P}^{h} f=\lim _{\epsilon \rightarrow 0}^{\downarrow} \tilde{P} f_{\epsilon} \quad \text { so that } \quad \tilde{P}^{h}(f) \text { is convex. }
$$

- We still have that $(x, u) \mapsto \tilde{Q} f(x)=\mathbb{E} f\left(x+u Z^{h}\right)$ is convex and non-decreasing in $u$ on $\mathbb{R}_{+}$(see Jensen's inequality revisited!).
- Let consider the truncated Euler scheme $\widetilde{X}^{h}=\widetilde{X}^{(\sigma), h}$ associated with step $h=\frac{T}{n}$ (and $t_{k}^{n}=\frac{k T}{n}$ ), i.e.

$$
\begin{aligned}
& \widetilde{X}_{t_{k+1}^{n}}^{n}=\widetilde{X}_{t_{k}^{n}}^{h}+\sigma\left(t_{k}^{n}, \widetilde{X}_{t_{k}^{n}}^{h}\right) Z_{k+1}^{h}, \quad \widetilde{X}_{0}^{h}=x \\
& \text { with } \quad Z_{k+1}^{h}=\sqrt{\frac{n}{T}}\left(W_{t_{k+1}^{n}}-W_{t_{k}^{n}}\right) \mathbf{1}_{\left\{\left|W_{t_{k+1}^{n}}-W_{t_{k}^{n}}\right| \leq A\right\}} .
\end{aligned}
$$

- This scheme satisfies the convex propagation and ordering properties.
- Does it converge strongly in $L^{p}$ toward to the diffusion $X^{(\sigma)}$ ? If "yes" then we proved:
If $\sigma(t, \cdot)$ satisfies ( $\mathcal{S}$ ) uniformly in $t \in[0, T]$ or $\theta(t, \cdot)$ satisfies ( $\mathcal{S}$ ) uniformly in $t \in[0, T]$, if
$0 \leq \sigma \leq \theta \quad$ and $\quad X_{0}^{(\sigma)} \preceq_{c v x} X_{0}^{(\theta)} \Longrightarrow \forall t \in[0, T], \quad X_{t}^{(\sigma)} \preceq_{c v x} X_{t}^{(\theta)}$ and, when $\sigma(t, \cdot)$ satisfies $(\mathcal{S})$ uniformly in $t \in[0, T]$,

$$
x \mapsto \mathbb{E} f\left(X_{T}^{(\sigma)}\right) \quad \text { is convex. }
$$

- Extension to a new class of functionals, see later on (with B. Jourdain).


## Proof of convergence of truncated Euler scheme

- Let $\left(\tilde{X}_{t_{k}}^{h}\right)$ be the truncated Euler scheme with step $h=\frac{T}{n}$ i.e. implemented with $Z_{k}^{h}:=Z_{k} \mathbf{1}_{\left\{\left|Z_{k}\right| \leq A / \sqrt{h}\right\}},\left(Z_{k}\right)_{k=1: n}$ i.i.d. $\mathcal{N}(0,1)$. Then, by independence,

$$
\begin{aligned}
\mathbb{P}\left(\widetilde{X}^{h} \neq \bar{X}^{n}\right) & =\mathbb{P}\left(\exists k \in 1: n:\left|Z_{k}\right| \geq A / \sqrt{h}\right) \\
& \leq n \mathbb{P}(|Z| \geq A / \sqrt{h}) .
\end{aligned}
$$

- Using $\mathbb{P}(|Z| \geq x) \leq e^{-\frac{x^{2}}{2}}, x>0$, (and $\left.h=\frac{T}{n}\right)$

$$
\mathbb{P}\left(\widetilde{X}^{h} \neq \bar{X}^{n}\right) \leq n e^{-\frac{A n}{2 T}} \rightarrow 0 \text { as } n \rightarrow+\infty .
$$

- As a consequence $\left(\ldots\right.$ ), if $X_{0} \in L^{p^{\prime}}(\mathbb{P}), p^{\prime}>p$ (can be relaxed by a more direct (hence tedious) approach and an equivariance argument)

$$
\left\|\max _{k=0: n} \mid \widetilde{X}_{t_{k}}^{h}-\bar{X}_{t_{k}}^{n}\right\|_{p} \rightarrow 0 \quad \text { as } \quad n \rightarrow+\infty
$$

- The original proof can be adapted and finally the semi-convexity $(\mathcal{S})$ assumption can be relaxed in continuous time.


## A 1-marginal $1 D$ result

## Theorem (Jourdain-P. 2023)

Let $\sigma, \theta \in \operatorname{Lip}_{x, \text { unif }}([0, T] \times \mathbb{R}, \mathbb{R})$. Let $X^{(\sigma)}$ and $X^{(\theta)}$ be the unique strong solutions to

$$
\begin{aligned}
& d X_{t}^{(\sigma)}=\sigma\left(t, X_{t}^{(\sigma)}\right) d W_{t}^{(\sigma)}, X_{0}^{(\sigma)} \in L^{1}(\mathbb{P}) \\
& d X_{t}^{(\theta)}=\theta\left(t, X_{t}^{(\theta)}\right) d W_{t}^{(\theta)}, \quad X_{0}^{(\theta)} \in L^{1}(\mathbb{P}),\left(W_{t}^{(\cdot)}\right)_{t \in[0, T]} \text { standard B.M. }
\end{aligned}
$$

(a) If $X_{0}^{(\sigma)} \preceq_{c v x} X_{0}^{(\theta)}$ and
then: $\quad \begin{cases}(i)_{\sigma} & \sigma(t, .)^{2}: \mathbb{R} \rightarrow \mathbb{R}_{+} \text {is semi-convex for every } t \in[0, T], \\ \text { or } & \\ (i)_{\theta} & \theta(t, .)^{2}: \mathbb{R} \rightarrow \mathbb{R}_{+} \text {is semi-convex for every } t \in[0, T], \\ \text { and } & \\ \text { (ii) } & 0 \leq \sigma(t, \cdot) \leq \theta(t, \cdot) \text { for every } t \in[0, T]\end{cases}$

- for every convex $f: \mathbb{R} \rightarrow \mathbb{R}, \mathbb{E} f\left(X_{T}^{(\sigma)}\right) \leq \mathbb{E} f\left(X_{T}^{(\theta)}\right) \in(-\infty,+\infty]$
- if $(i)_{\sigma}$ holds true $x \mapsto \mathbb{E} f\left(X_{T}^{(\sigma), x}\right)$ is convex.
- Slightly (technically) improves the result by [El karoui et al.] ( $\simeq \sigma(t, \cdot)$ semi-convex).


## A 1-marginal $1 D$ result improved

## Theorem (Jourdain-P. 2023)

Let $\sigma, \theta \in \operatorname{Lip}_{x, \text { unif }}([0, T] \times \mathbb{R}, \mathbb{R})$. Let $X^{(\sigma)}$ and $X^{(\theta)}$ be the unique strong solutions to

$$
\begin{aligned}
& d X_{t}^{(\sigma)}=\sigma\left(t, X_{t}^{(\sigma)}\right) d W_{t}^{(\sigma)}, X_{0}^{(\sigma)} \in L^{1}(\mathbb{P}) \\
& d X_{t}^{(\theta)}=\theta\left(t, X_{t}^{(\theta)}\right) d W_{t}^{(\theta)}, \quad X_{0}^{(\theta)} \in L^{1}(\mathbb{P}),\left(W_{t}^{(\cdot)}\right)_{t \in[0, T]} \text { standard B.M. }
\end{aligned}
$$

(a) If $X_{0}^{(\sigma)} \preceq_{c v x} X_{0}^{(\theta)}$ and
then:

$$
\left\{\begin{array}{lc}
(i)_{\sigma} & \varnothing \\
\text { or } & \\
(i)_{\theta} & \varnothing \\
\text { and } & \\
\text { (ii) } & 0 \leq \sigma(t, \cdot) \leq \theta(t, \cdot) \text { for every } t \in[0, T]
\end{array}\right.
$$

- for every convex $f: \mathbb{R} \rightarrow \mathbb{R}, \mathbb{E} f\left(X_{T}^{(\sigma)}\right) \leq \mathbb{E} f\left(X_{T}^{(\theta)}\right) \in(-\infty,+\infty]$
- if $(i)_{\sigma}$ holds true $x \mapsto \mathbb{E} f\left(X_{T}^{(\sigma), x}\right)$ is convex.
(b) It also works with diffusions sharing the same affine drift $b(t, x)=\alpha(t) x+\beta$.
- Significantly (technically) improves the result by [El karoui et al.] ( $\simeq \sigma(t, \cdot)$


## When the drift comes back into the game III (gentle reminder)

## Theorem (Extended Hajek's Theorem, P. 2016, Sém. Prob. XLVIII)

Let $\sigma, \theta, b_{1}, b_{2} \in \mathcal{C}_{l i i_{x}, U n i f_{t}}([0, T] \times \mathbb{R}, \mathbb{R})$. Let $X^{(\sigma)}$ and $X^{(\theta)}$ be the unique weak solutions to

$$
\begin{aligned}
d X_{t}^{(\sigma)} & =b_{1}\left(t, X_{t}^{(\sigma)}\right) d t+\sigma\left(t, X_{t}^{(\sigma)}\right) d W_{t}^{(\sigma)}, X_{0}^{(\sigma)} \in L^{1+\eta}(\mathbb{P}) \\
d X_{t}^{(\theta)} & =b_{2}\left(t, X_{t}^{(\theta)}\right) d t+\theta\left(t, X_{t}^{(\theta)}\right) d W_{t}^{(\theta)}, X_{0}^{(\theta)} \in L^{1+\eta}(\mathbb{P})
\end{aligned}
$$

with $\left(W_{t}^{(\cdot)}\right)_{t \in[0, T]}$ are a standard 1D B.M. If
$(i)_{b_{1}, \sigma} b_{1}(t,$.$) and \sigma(t, \cdot)$ convex, $t \in[0, T], \quad\left(\Rightarrow x\right.$-Lipschitz Unif $\left.f_{t}\right)$ or
$(i)_{b_{2}, \theta} b_{2}(t,$.$) and \theta(t, \cdot)$ convex, $t \in[0, T]$.
Then, if $0 \leq \sigma(t, \cdot) \leq \theta(t, \cdot)$ and $X_{0}^{(\sigma)} \preceq_{\text {icv }} X_{0}^{(\theta)}$,
(a) For every $F: \mathcal{C}([0, T], \mathbb{R}) \rightarrow \mathbb{R}$, convex, pointwise non-decreasing with $\|\cdot\|_{\text {sup }}$-polynomial growth (hence $\|\cdot\|_{\text {sup }}$-continuous)

$$
\mathbb{E} F\left(X^{(\sigma)}\right) \leq \mathbb{E} F\left(X^{(\theta)}\right)
$$

(b) If $(i)_{b_{1}, \sigma}$ holds then $x \mapsto \mathbb{E} F\left(X^{(\sigma)}\right)$ is convex.

## Back to non-decreasing convex order $(d=q=1)$ : revisiting Hajek's theorem

- Assume $f: \mathbb{R} \rightarrow \mathbb{R}$ is smooth convex and non-decreasing.
- If

$$
\operatorname{Pf}(x)=\mathbb{E} f(x+h b(t, x)+\sqrt{h} \sigma(t, x) Z), \quad Z \sim \mathcal{N}(0,1)
$$

with $b(t, \cdot)$ and $\sigma(t, \cdot)$ are uniformly Lipschitz then

$$
(P f)^{\prime}(x)=\mathbb{E}[\underbrace{f^{\prime}(x+h b(t, x)+\sqrt{h} \sigma(t, x) Z)}_{\geq 0}\left(1+h b^{\prime}(t, x)+\sqrt{h} \sigma_{x}^{\prime}(t, x) Z\right)] .
$$

- Note that

$$
1+h b^{\prime}(t, x)+\sqrt{h} \sigma_{x}^{\prime}(t, x) Z \geq 1-h\left\|b_{x}^{\prime}\right\|_{\text {sup }}-\sqrt{h}\left\|\sigma_{x}^{\prime}\right\|_{\text {sup }}|Z|
$$

- Hence, if $0<h<\left(2\left\|b_{x}^{\prime}\right\|_{\text {sup }} \|\right)^{-1}$ then

$$
1+h b^{\prime}(t, x)+\sqrt{h} \sigma_{x}^{\prime}(t, x) Z \geq 0 \text { on }\left\{|Z| \leq \frac{1}{2 \sqrt{h}\left\|\sigma_{x}^{\prime}\right\|_{\text {sup }}}\right\} .
$$

- Etc, like before (the two ideas can be combined...).


## When the drift comes back into the game III

## Theorem (Extended Hajek's Theorem, Jourdain-P. 2023)

Let $\sigma, \theta, b_{1}, b_{2} \in \mathcal{C}_{\text {linx }}([0, T] \times \mathbb{R}, \mathbb{R})$. Let $X^{(\sigma)}$ and $X^{(\theta)}$ be the unique weak solutions to

$$
\begin{aligned}
d X_{t}^{(\sigma)} & =b_{1}\left(t, X_{t}^{(\sigma)}\right) d t+\sigma\left(t, X_{t}^{(\sigma)}\right) d W_{t}^{(\sigma)}, X_{0}^{(\sigma)} \in L^{1+\eta}(\mathbb{P}) \\
d X_{t}^{(\theta)} & =b_{2}\left(t, X_{t}^{(\theta)}\right) d t+\theta\left(t, X_{t}^{(\theta)}\right) d W_{t}^{(\theta)}, X_{0}^{(\theta)} \in L^{1+\eta}(\mathbb{P})
\end{aligned}
$$

with $\left(W_{t}^{(\cdot)}\right)_{t \in[0, T]}$ are a standard 1D B.M. If
$(i)_{b_{1}, \sigma} b_{1}(t,$.$) convex, t \in[0, T]$, and $\varnothing$
or
$(i)_{b_{2}, \theta} b_{2}(t,$.$) convex, t \in[0, T]$ and $\varnothing$.
Then, if $0 \leq \sigma(t, \cdot) \leq \theta(t, \cdot)$ and $X_{0}^{(\sigma)} \preceq_{\text {icv }} X_{0}^{(\theta)}$,
(a) For every $F: \mathcal{C}([0, T], \mathbb{R}) \rightarrow \mathbb{R}$, convex, pointwise non-decreasing with $\|\cdot\|_{\text {sup }}$-polynomial growth (hence $\|\cdot\|_{\text {sup }}$-continuous)

$$
\mathbb{E} F\left(X^{(\sigma)}\right) \leq \mathbb{E} F\left(X^{(\theta)}\right)
$$

(b) If $(i)_{b_{1}, \sigma}$ holds then $x \mapsto \mathbb{E} F\left(X^{(\sigma)}\right)$ is convex.

## A first conclusion and provisional remarks on $1 D$ setting

- Relaxing convexity in $x$ of the diffusion coefficient $\sigma(t, x)$ can be seen as a second extension of Hajek's theorem (for diffusions with no drift).
- This result is deeply one dimensional and cannot be extended to higher dimension at a reasonable level of generality (to our best knowledge).
- The second results for marginal increasing convex ordering for diffusions having convex drifts " $b^{\sigma} \leq b^{\theta \text { " ' }}$ is essentially Hajek's.
- A combination of the two truncations is possible (in progress with B. Jourdain) and would be a first strict improvement of Hajek's theorem.
- Applications to local volatility models (like CEV) extending results by El Karoui-Jeanblanc-Shreve to continuous time path-dependent options.


## Functional extension ? Directionally convex functionals

- A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is directionally convex if
- $\forall i, x_{i} \mapsto f\left(x_{1}, \ldots, x_{i}, \ldots x_{d}\right)$ is convex
- $\forall j, x_{j} \mapsto \partial_{x_{i}} f\left(x_{1}, \ldots, x_{i}, \ldots x_{d}\right)$ is non-decreasing.
or, equivalently, $f$ Is Borel measurable and

$$
\forall x \in \mathbb{R}^{m}, \forall y, z \in \mathbb{R}_{+}^{m}, f(x+y+z)-f(x+y)-f(x+z)+f(x) \geq 0
$$

- A functional $F: \mathcal{C}([0, T], \mathbb{R}) \rightarrow \mathbb{R}$ is directionally convex if it is measurable and

$$
\begin{aligned}
\forall x \in & \mathcal{C}([0, T], \mathbb{R}), \forall y, z \in \mathcal{C}\left([0, T], \mathbb{R}_{+}\right) \\
& F(x+y+z)-F(x+y)-F(x+z)+F(x) \geq 0
\end{aligned}
$$

## Theorem

The $1 D$ version of both functional comparison-propagation theorems remains true (under standard Lipschitz but without convexity assumptions) for the class of continuous directionally convex functionals on $C([0, T], \mathbb{R})$ with r-polynomial growth if $X_{0}^{(\sigma)}$ and $X_{0}^{(\vartheta)} \in L^{r}(\mathbb{P})$.

Examples I $\left(\mathbb{R}^{d}\right)$

drictimentle

On condidue \& fantáa

$$
f(x, y)=\frac{1}{2}\left(a x^{2}+b y^{2}+c x y\right)
$$

- f maginalemant umexe ssi $a, b \geqslant 0$
- f canvier ssi $D^{2} f(m, y) \in f^{+}(d, \mathbb{R}) \Leftrightarrow\left[\begin{array}{ll}a & c_{2} \\ y_{e} & b^{2}\end{array}\right]+\rho^{+}\left(d_{1}(\mathbb{X})\right.$
- f drectimenellement cmerace sh $\quad a, b, c \geqslant 0$

Ex: Si $a, b>0$

- maginaliment umece

IItrinniri cinvexe

- diectiannel couvere



## Examples II (functional)

- Smooth directionally convex functionals: if $F: C([0, T], \mathbb{R}) \rightarrow \mathbb{R}$ is $\mathcal{C}^{2}, F$ is directionally convex iff

$$
\forall x, u, v \in C([0, T], \mathbb{R}), \quad u, v \geq 0 \Longrightarrow D^{2} F(x) \cdot(u, v) \geq 0
$$

- Let $\varphi, \Phi: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\forall x, \in C([0, T], \mathbb{R}), \quad F(x)=\Phi\left(\int_{0}^{T} \varphi(x(s)) d s\right) .
$$

- $F$ is convex iff $\varphi$ is convex and $\Phi$ is non-decreasing convex.
- $F$ is directionally convex iff both $\varphi$ and $\Phi$ are non-decreasing convex.


## Extensions

This provides as systematic approach which successfully works with

- Jump diffusions,
- (Possibly) path-dependent American style options, (Sém. Proba XLVIII, 2016),
- BSDE (unfortunately without " $Z$ " in the driver),
- McKean-Vlasov SDEs (with applications to MFG, with Y. Liu (AAP, 2023),
- Volterra equations (with application to rough volatility modeling, with B. Jourdain (Fin. \& Stoch., 2024)),
- Stochastic control (a first on going work with C. Yeo) with application to swing option on gas
- ...

Let's have a short look. . .

## The case of jump diffusions

$\triangleright$ Lévy process: Let $Z=\left(Z_{t}\right)_{t \in[0, T]}$ be a Lévy process with Lévy measure $\nu$ satisfying

- $\int_{0<|z| \leq 1}|z|^{2} \nu(d z)<+\infty$ of course. ..
- $\int_{|z| \geq 1}|z|^{p} \nu(d z)<+\infty, p \in[1,+\infty)$ (hence $\left.Z_{t} \in L^{1}(\mathbb{P}), t \in[0, T]\right)$.
- $\mathbb{E} Z_{1}=0$.

Then

$$
\left(Z_{t}\right)_{t \in[0, T]} \text { is an centered } \mathcal{F}^{Z} \text {-martingale. }
$$

## Theorem (P. 2016, Séminaire de Proba XLVIII , $d=q=1$, "weak version", not yet updated $d, q \geq 1$ but in progress)

Let $\kappa_{i} \in \mathcal{C}_{\text {lin }_{x}, \text { unif }}^{t} \boldsymbol{(}([0, T] \times \mathbb{R}), i=1,2$, be continuous functions Let $X^{\left(\kappa_{i}\right)}=\left(X_{t}^{\left(\kappa_{i}\right)}\right)_{t \in[0, T]}$ be the diffusion processes, unique weak solutions to

$$
d X_{t}^{\left(\kappa_{i}\right)}=\kappa_{i}\left(t, X_{t-}^{\left(\kappa_{i}\right)}\right) d Z_{t}, X_{0}^{\left(\kappa_{i}\right)} \in L^{p}(\mathbb{P}), i=1,2
$$

(a) $Z_{1}$ centered: Assume $\kappa=\kappa_{1}$ or $\kappa_{2}$ satisfies: $\forall t \in[0, T], \kappa(t,$.$) convex and$ that

$$
0 \leq \kappa_{1} \leq \kappa_{2} .
$$

(b) $Z_{1}$ radial: If $Z_{1} \stackrel{\mathcal{L}}{=}-Z_{1},|\kappa|$ is convex in $x$ and $\kappa_{i}$ satisfy

$$
\left|\kappa_{1}\right| \leq\left|\kappa_{2}\right| .
$$

(i) Let $F: \mathbb{D}([0, T], \mathbb{R}) \rightarrow \mathbb{R}$ be a convex Skorokhod-continuous functional with $r$-polynomial growth, $r<p$

$$
\forall \alpha \in \mathbb{D}([0, T], \mathbb{R}), \quad|F(\alpha)| \leq C\left(1+\|\alpha\|_{\text {sup }}^{r}\right), 0<r<p .
$$

(ii) If $\kappa_{1}(t, \cdot)$ convex, $t \in[0, T]$, then for everty $F$ as above

$$
x \mapsto \mathbb{E} F\left(X^{\left(\kappa_{1}\right), x}\right) \text { is convex. }
$$

## Key argument when $d=q=1$

- Discrete time approach is similar to Brownian diffusions
- Transfer phase is based on the Skorokhod functional weak convergence of the Euler scheme toward the martingale jump diffusion.
- Which in turn relies on functional weak convergence of stochastic integrals (see e.g. [Mémin-Jakubowski-P., PTRF, 1989]).
- A "strong" version with Lipschitz coefficients $\kappa_{i}$ (uniformly in $t$ ) should work, possible without Skorokhod topology.
- Higher dimensions should work too if $Z$ is radial (but not yet proved to our best knowledge).


## Discrete time optimal stopping (Bermuda options). . .

... of ARCH models in 1-dimension.
$\triangleright$ Dynamics: Still... $\left(Z_{k}\right)_{1 \leq k \leq n}$ be a sequence of independent, (centered and) symmetric r.v.

$$
\begin{aligned}
X_{k+1} & =X_{k}+\sigma_{k}\left(X_{k}\right) Z_{k+1}, \quad X_{0} \in L^{1}(\mathbb{P}) \\
Y_{k+1} & =Y_{k}+\theta_{k}\left(Y_{k}\right) Z_{k+1}, \quad 0 \leq k \leq n-1, \quad Y_{0} \in L^{1}(\mathbb{P})
\end{aligned}
$$

where $\sigma_{k}, \theta_{k}: \mathbb{R} \rightarrow \mathbb{R}, k=0, \ldots, n-1$ with (at most) linear growth.

## Snell envelopes and Bermuda/American options

$\triangleright$ Let $F_{k}: \mathbb{R}^{k+1} \rightarrow \mathbb{R}_{+}, k=0, \ldots, n$ be a sequence of non-negative convex (payoff) functions with $r$-polynomial growth for the sup norm.
$\triangleright$ Let $\mathcal{F}=\left(\mathcal{F}_{k}\right)_{0 \leq k \leq n}$ be a filtration such that $Z_{k}$ is $\mathcal{F}_{k}$-adapted and $Z_{k}$ is independent of $\mathcal{F}_{k-1}, k=1, \ldots n$.
$\triangleright$ Snell envelopes of the reward processes $\left(F_{k}\left(X_{0: k}\right)\right)_{0 \leq k \leq n}$ and $\left(F_{k}\left(Y_{0: k}\right)\right)_{0 \leq k \leq n}$

$$
U_{k}=\mathbb{P} \text {-esssup }\left\{\mathbb{E}\left(F_{\tau}\left(X_{0: \tau}\right) \mid \mathcal{F}_{k}\right), \tau \mathcal{F} \text {-stopping time, } \tau \geq k\right\}
$$

and

$$
V_{k}=\mathbb{P} \text {-esssup }\left\{\mathbb{E}\left(F_{\tau}\left(Y_{0: \tau}\right) \mid \mathcal{F}_{k}\right), \tau \mathcal{F} \text {-stopping time, } \tau \geq k\right\}
$$

$\triangleright$ These are the lowest super-martingales that dominate the reward processes.

## Backward Dynamic programming Principle

## Proposition (Backward Dynamic programming Principle (BDDP))

(a) The Snell envelope satisfies

$$
U_{n}=F_{n}\left(X_{0: n}\right), \quad U_{k}=\max \left(F_{k}\left(X_{0: k}\right), \mathbb{E}\left(U_{k+1} \mid F_{k}\right)\right), k=0: n-1
$$

(b) One has

$$
U_{k}=u_{k}\left(X_{0: k}\right) \quad \mathbb{P} \text {-a.s., } k=0, \ldots, n-1,
$$

where the functions $u_{k}: \mathbb{R}^{k+1} \rightarrow \mathbb{R}_{+}, k=0: n$, satisfy the functional BDDP

$$
\begin{gathered}
\left.\left.u_{n}\left(x_{0 ; n}\right)=F_{n}\left(x_{0 ; n}\right), \quad u_{k}\left(x_{0: k}\right)=\max \left(F_{k}\left(x_{0: k}\right), Q_{k+1} u_{k+1}\left(x_{0: k}, x_{k}+.\right)\right)\left(\sigma_{k}\left(x_{k}\right)\right)\right)\right) \\
k=0, \ldots, n-1 .
\end{gathered}
$$

- Propagation of the convexity: Note that $(a, b) \mapsto \max (a, b)$ is non-decreasing in $a$ and $b$ and "copy-paste" the proofs for a fixed functional using the "revisited" Jensen's Inequality.


## Proposition

(a) Convex ordering. If, either

$$
\begin{cases}(*)_{\sigma} & \left|\sigma_{k}\right| \text { is convex for every } k=0: n-1 \\ \text { or } & \\ (*)_{\theta} & \left|\theta_{k}\right| \text { is convex for every } k=0: n-1\end{cases}
$$

and

$$
\left|\sigma_{k}\right| \leq\left|\theta_{k}\right|, k=0, \ldots, n-1
$$

then,

$$
u_{k}\left(x_{0: k}\right) \leq v_{k}\left(x_{0: k}\right), k=0, \ldots, n .
$$

(b) Convexity. If $(*)_{\sigma}$ holds then

$$
x \longmapsto u_{k}\left(x_{0: k}\right) \text { is a convex function on } \mathbb{R}^{k+1} .
$$

In particular, if $X_{0} \preceq_{c v x} Y_{0}$ then $\mathbb{E} U_{0}=\mathbb{E} u_{0}\left(X_{0}\right) \leq \mathbb{E} u_{0}\left(Y_{0}\right) \leq \mathbb{E} v_{0}\left(Y_{0}\right)=\mathbb{E} V_{0}$.
$\triangleright$ Idem for $v_{k}: \mathbb{R}^{k+1} \rightarrow \mathbb{R}$ in connection with the $(\mathbb{P}, \mathcal{F})$-Snell envelope $V$. $\triangleright$ Note that $u_{k+1}$ convex still implies

$$
\xi \longmapsto\left(Q_{k+1} u_{k+1}\left(x_{0: k}, \cdot\right)\right)\left(x_{k}, \xi\right) \text { is non-decreasing on } \mathbb{R}_{+} .
$$

$\triangleright$ Comparison Principle $\left(\left|\sigma_{k}\right| \leq\left|\theta_{k}\right|\right)$ : Backward induction to prove $u_{k} \leq v_{k}, k=0: n$ (obvious if $k=n$ ).

Assume $u_{k+1} \leq v_{k+1}, k+1 \leq n$. For every $x_{0: k} \in \mathbb{R}^{k+1}$

$$
\begin{aligned}
u_{k}\left(x_{0: k}\right) & \leq \max \left(F_{k}\left(x_{0: k}\right),\left(Q_{k+1} u_{k+1}\left(x_{0: k}, \cdot\right)\right)\left(x_{k}, \theta_{k}\left(x_{k}\right)\right)\right) \\
& \leq \max \left(F_{k}\left(\left(x_{0: k}\right),\left(Q_{k+1} v_{k+1}\left(x_{0: k}, \cdot\right)\right)\left(x_{k}, \theta_{k}\left(x_{k}\right)\right)\right)=v_{k}\left(x_{0: k}\right)\right.
\end{aligned}
$$

If $k=0$, we get

$$
\mathbb{E} U_{0}=u_{0}(x) \leq v_{0}(x)=\mathbb{E} V_{0}
$$

## Back to continuous time

$\triangleright$ Let $F:[0, T] \times \mathcal{C}\left([0, T], \mathbb{R}^{d}\right) \rightarrow \mathbb{R}_{+}$be a Lipschitz continuous functional and the resulting American payoffs processes $\left(F\left(t,\left(X^{(\sigma)}\right)\right)^{t}\right)_{t \in[0, T]}$ and $\left.\left(F\left(t,\left(Y^{(\theta)}\right)\right)^{t}\right)\right)_{t \in[0, T]}$.
$\triangleright$ Snell envelopes of the Euler schemes of martingale diffusions $X$ and $Y$

$$
U^{(n)}=\mathbb{P} \text {-Snell }\left(F_{k}\left(\bar{X}_{0: k}^{(\sigma), n}\right)_{k=0: n}\right) \quad V^{(n)}=\mathbb{P} \text {-Snell }\left(F_{k}\left(\bar{Y}_{0: k}^{(\theta), n}\right)_{k=0: n}\right)
$$

$\triangleright$ Convergence: In the case of Brownian diffusions, it is a classical result (with convergence rates in fact, see e.g. $\left({ }^{8}\right)$ that

$$
\left\|\max _{0 \leq k \leq n} \mid U_{k}^{(n)}-U_{t_{k}^{n} \mid}^{X}\right\|_{p} \rightarrow 0 \text { and }\left\|\max _{0 \leq k \leq n}\left|V_{k}^{(n)}-V_{t_{k}^{n}}^{Y}\right|\right\|_{p} \rightarrow 0 \text { as } n \rightarrow+\infty
$$

Etc (limit theorems).

[^3]$\triangleright$ Conclusion: As usual...

## Theorem (P. 2016)

Under former partitioning or dominating convexity assumptions on $\sigma(t, \cdot)$ and $\theta(t, \cdot), F: \mathcal{C}([0, T], \mathbb{R}) \rightarrow \mathbb{R}_{+}$convex and continuous and $X_{0}^{(\sigma)} \preceq X_{0}^{(\theta)}$ one has

$$
\mathbb{E} U_{0}^{X^{(\sigma)}} \leq \mathbb{E} V_{0}^{X^{(\theta)}}
$$

and, if $\sigma(t, \cdot)$ is convex, $x \mapsto u_{0}(x):=\mathbb{E} U_{0}^{X^{(\sigma), x}}$ is convex.

Warning! No standard "réduites" at time $t>0$, due to path-dependence. If $F(t, x)=h(t, x(t))$, then $u_{t}(x) \leq v_{t}(x)$ for every $t \in[0, T]$ if $h(t, \cdot)$ is convex for every $t$ and hLispchitz.

## Jump martingale diffusions: what makes problem?

$\triangleright$ Discrete time step: Identical.
$\triangleright$ From discrete to continuous time: Still the Euler scheme. But we have to make the Snell envelopes converge. . How to proceed?

## Filtration enlargement argument/trick

Let $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$ be a filtration and let $Y$ be an $\left(\mathcal{F}_{t}\right)_{t \in[0, T] \text {-adapted càdlàg }}$ process defined on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ so that

$$
\forall t \in[0, T], \quad \mathcal{F}_{t}^{Y} \subset \mathcal{F}_{t}
$$

We introduce the so-called $\mathcal{H}$-assumption (on the filtration $\left.\left(\mathcal{F}_{t}\right)_{t \in[0, T]}\right)$ :

$$
(\mathcal{H}) \equiv \forall H \in \mathcal{F}_{T}^{Y}, \text { bounded, } \mathbb{E}\left(H \mid \mathcal{F}_{t}\right)=\mathbb{E}\left(H \mid \mathcal{F}_{t}^{Y}\right) \mathbb{P} \text {-a.s. }
$$

Example: $\mathcal{F}_{t}=\sigma\left(\mathcal{F}_{t}^{Y}, \equiv\right), \equiv \Perp Y$.

## Theorem (Lamberton-P., 1990)

$\left({ }^{a}\right) \triangleright$ Let $\left(X^{n}\right)_{n \geq 1}$ be a sequence of quasi-left càdlàg processes defined on a probability spaces $\left(\Omega^{n}, \mathcal{F}^{n}, \mathbb{P}^{n}\right)$ of $(D)$-class and satisfying the Aldous criterion. Let $\left(\tau_{n}^{*}\right)_{n \geq 1}$ be a sequence of $\left(\mathcal{F}^{X^{n}}, \mathbb{P}^{n}\right)$-optimal stopping times. If $\left(X^{n}\right)_{n \geq 1}$ is uniformly integrable and satisfies

$$
X^{n} \xrightarrow{\mathcal{L}(\text { Skor })} X, \mathbb{P}_{X}=\mathbb{P} \text { probability measure on }\left(\mathbb{D}([0, T], \mathbb{R}), \mathcal{D}_{T}\right) .
$$

$\triangleright$ Non-degeneracy of $\left(\tau_{n}^{*}\right)_{n \geq 1}$ : every limiting value $\mathbb{Q}$ of $\mathcal{L}\left(X^{n}, \tau_{n}^{*}\right)$ on $\mathbb{D}([0, T], \mathbb{R}) \times[0, T]$ satisfies the $(\mathcal{H})$ property $[\ldots]$, then

$$
\lim _{n} \mathbb{E}_{\mathbb{P}^{n}} U_{0}^{X^{n}}=\mathbb{E}_{\mathbb{P}} U_{0}^{X}
$$

$\triangleright$ If the optimal stopping problem related to $\left(X, \mathbb{Q}, \mathcal{D}^{\theta}\right)$ has a unique solution in distribution, say $\mu_{\tau^{*}}^{*}$, not depending on $\mathbb{Q}$, then $\tau_{n}^{*} \xrightarrow{[0, T]} \mu_{\tau^{*}}^{*}$.

[^4]
## Theorem (P. 2016)

Under the usual assumptions on $\kappa_{i}, i=1,2$, the Lévy process $\left(Z_{t}\right)_{t \in[0, T]}$ (through $Z_{1}$ ) and the American payoffs $\left(F_{t}\right)_{t \in[0, T]}$ (convexity and polynomial growth) and the ordering of the starting values of the SDEs, then the Snell envelopes at time 0 associated to $\left(F_{t}\right)$ and the jump diffusions $X^{\left(\kappa_{i}\right), x}, i=1,2$, satisfy

$$
\mathbb{E} U_{0}^{(1)} \leq \mathbb{E} V_{0}^{(1)}
$$

In particular the resulting "réduites" (when both diffusions start from $x$ ) satisfy

$$
u_{0}^{\left(\kappa_{1}\right)}(x) \leq u_{0}^{\left(\kappa_{2}\right)}(x)
$$

Moreover, if $\kappa_{1}(t, \cdot)$ si convex for every $t \in[0, T]$, then $x \mapsto u_{t}^{\left(\kappa_{1}\right)}(x)$ is convex.

All the efforts are focused on showing that the filtration enlargement assumption $(\mathcal{H})$ is satisfied by any limiting distribution $\mathbb{Q}$.


[^0]:    ${ }^{5}$ Limit theorems for stochastic processes, Springer, 2010.

[^1]:    ${ }^{6}$ see El Karoui et al. 1998, Robustness of the Black and Scholes formula, Math. Fin.

[^2]:    7 see Thm 3.7, chap. IX, Revuz-Yor, Continuous martingales and Brownian motion, Springer, 3rd ed. 1998

[^3]:    ${ }^{8}$ V. Bally-P. ('03), Error analysis of the quantization algorithm for obstacle problems, Stochastic Processes \& Their Applications, 106(1), 1-40, 2003

[^4]:    ${ }^{a}$ Sur l'approximation des réduites, Annales IHP B, 1990.

