Martingale (and scaled) Brownian diffusions ~ Functional limit theorem: ...to continuous time

“Weak" diffusion setting

@ Step 2bis (Transfer in the “weak” linear growth continuous setting):
See e.g. [Jacod-Shiryaev's book 2" edition, Theorem 3.39,
p.551] (°).

X (@ Allsw) x(0) 5pg x(@n Allew) x@) 5 5 f oo
@ We know that, as o(t,-) and 6(t, -) have linear growth

te[0,T]

sup \)N<
te[0,T]

< G, 7(1+ [ Xol[144)
14+n

147

Hence, if F is || - ||sup-Lipschitz, then F()?(")’”), n > 1, is uniformly
integrable so that

EF(X)=limEF (X)) (idem for X)),

o Hence  EF(X9) <EF(X). O

Limit theorems for stochastic processes, Springer, 2010.
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Martingale (and scaled) Brownian diffusions ~ Functional limit theorem: ...to continuous time

Connection between convexity and convex ordering

@ Convexity of x — [E F(X*) can be obtained as a by-product of the proof by
“transferring” convexity property from discrete to continuous time. ..

@ but also, a posteriori: in this diffusion framework

Convex ordering = Convexity |.

@ Let x,ye R, A€ [0,1]. One has
5>\X—|—(1—>\)y cvx A0y + (1 — >\)5y
Assume o = 0. Let
Xo(a) = A+ (1—MN)y and )~<0(0) =ex+(1—¢)y, e ~Ber({0,1},\) 1L W.

o Then X! ~ A6, + (1 — A)3, and X(@) = eX* + (1 — £)X¥ and
Ee = X so that, for every l.s.c. convex functional
F:C([0, T|,RY) — R,

E F(XMHA=y) < B F(X(O)) = AE F(X¥) + (1 — A\)E F(XY).

@ Same result for monotone convex orders (see later on).
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Martingale (and scaled) Brownian diffusions ~ Functional limit theorem: ...to continuous time

The Euler scheme provides a simulable approximation

which preserves convex order.

G. Pages (LPSM) Ordre convexe fonctionnel LPSM-Sorbonne Univ. 53 /124



Martingale (and scaled) Brownian diffusions ~ Local volatility models

Application | : Local Volatility models (functional p.c.o.c).

o New notations (&, § denote now “true” volatility)
dSt = fStdt -+ St 5(1’, St)th, 50 = Sp > O,

where ¢ : [0, T] x R — R is a bounded continuous function.

@ (At least) the weak solution exists and satisfies (see also Feller's
criterion .. .)

§§5) = e_rt5§5) — soefot 5(s,547)dBs— 3 [5 5%(s,5"))ds > 0.

~

@ Idem for 6 ~~ O(t,x) = x0(t, x) (same drift x — r x of course).

@ We assume that N
0<o<kKr<H

and Vte [0, T], x(t,-) : x — xrK(t, x) is convex on the whole real line.
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Martingale (and scaled) Brownian diffusions ~ Local volatility models

A comparison /propagation result

Theorem (Extension of et al. Theorem., P. 2016)

If there exists a function k : [0, T| x Ry — R, such that
k(t,-) : x — xk(t,x) is a convex function on R
satisfying

(a) Partitioning: 0 <&(t,.) <&(t,.) <0(t,.) on Ry, te [0, T,

or

~

(b) Dominating: |o(t,.)| < 6(t,.) =k(t,.-), te [0, T].
Then
(i) For every every convex F : C([0, T],R;) — R with polynomial growth

E F(S(G)) <E F(S(g)) € (—o0, +oq].

(i) If o(t,x) = xo(t, x) is convex for every t€ [0, T], then

x = E F(5©)>) js convex.
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Martingale (and scaled) Brownian diffusions ~ Local volatility models

Figure: Left: flat partitioning. Right: flat bounding (El Karoui et al.).

@ This theorem contains Carr et al. & Baker-Yor theorem(s).

@ The method of proof applies to American style options, Lévy driven
diffusions, stochastic integrals, etc (see P. 2016 and later on).

e Warning ! (1D-)Misltein scheme: does not propagate convexity.
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Martingale (and scaled) Brownian diffusions = Concave local volatility models (with A. Fadili)

Application Il: Concave Local Vol. models (with A. Fadili)

@ Concave Local Volatility (CLV) models (> CEV): let
o(x) = xao(x) >0, concave 7 on (0,4+00), o(x) =0, x <0, continuous.
dSt == U(St)th, 50 = S > 0,

s.t. the (unique possible weak) solution satisfies S; > 0, t< [0, T]|.
@ Example. (Discounted) CEV model (r = 0) [which hits 0 a.s.... OK]:

St =5 +19/t VS.dW,, te o, T].
@ Then, for every fixed u > 0, the zoncavity property implies
o(x) < (a(u) + o'(u)(x — u)>+, xe Ry
so that, if we set
dx — (J(u) 4o’ (u)(x™ - u)>+th, X\ = s

then, for every convex vanilla payoff o : Ry — R,

E o(St) < infusoEp(X®)
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Martingale (and scaled) Brownian diffusions = Concave local volatility models (with A. Fadili)

=

T09 / ol > T(w)+T/(v) (A4)

F_,_____
2N/

M- :5[._‘]

Figure: Black-Scholes convex domination of a Local Volatility model.
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Martingale (and scaled) Brownian diffusions = Concave local volatility models (with A. Fadili)

Back to Black(-Scholes)

@ Set &(u) = ‘;/((5)) — u > 0 (by concavity). Hence

X460 = 0+ 60+ [ 7)) +)*

>0 >0

By strong uniqueness, Xt(”) + &(u) = Yt(”) where Y(¥) satisfies
Black-Scholes dynamics

t
Yy = v 4 6/ (u) / Y aw,.
0

e Example: if p(x) = (x — K)4 is a vanilla Call payoff

E (St — K)+ < inf Callgs (so +&(u), K + £(u), o' (u), 0, T).
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Martingale (and scaled) Brownian diffusions = Concave local volatility models (with A. Fadili)

Proposition (Tractable upper-bound)

One has

(i) u—E (YT(“) — K) 4 is differentiable and %E (YT(”) — K)+ >0 on
| max(sp, K), +00)

(i) Hence

i —K)L < ' 11 K /
(ST 104 = oyl g Colles o+ S K+ (0. 710)

leading to a faster search for the argmin.

Practitioner’'s corner: — In fact umis lies not far from sy and K.

_ - - so+
Exploration starting from 27—
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Martingale (and scaled) Brownian diffusions =~ Concave local volatility models (with A. Fadili)

Back to 1D-models

Question: is convexity of o always mandatory (e.g. in one dimension)?

At least for some specific functionals ?
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Martingale (and scaled) Brownian diffusions = Back to 1D (Jourdain-P. '23, ArXiv)

Is convexity necessary ? o(t,x) =o0(x),d=qg=1

@ We assume for a while that d = g = 1.

@ One shows [Jourdain-P. '23] that (when d = 1)

\fya )| = lim 7E\X F x| = lim 7E\X -Xg| = lim —EFt(X )

with Fi(a) = |a(t) — «(0)| an (only) 2-marginal convex functionals.

@ As soon as convexity propagation for 2-marginal functionals holds
true then |o| is convex !!

@ Conclusion: The convexity assumption on either o or ¥} is mandatory
.except, maybe, for 1-marginal convex order when d = g = 1.
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Martingale (and scaled) Brownian diffusions = Back to 1D (Jourdain-P. '23, ArXiv)

A discrete time counterexample: back to ARCH

e Still with
XEq = XS+ ok(XE) Zky1, k=0,n—1, Xg = x€ L'(P).

@ Assume that, for every (Lipschitz) convex function F : R? — R,
x — E F(Xk, Xp) is convex.

@ Then x — E|X{* — x| is convex i.e.
x — E|og(x)Z1| = |oo(x)|E |Z1] is convex.

@ Hence x — |og(x)] is convex.
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Martingale (and scaled) Brownian diffusions = Back to 1D (Jourdain-P. '23, ArXiv)

1—margina| of 1D diffusion (after [EI Karoui et al.]) Direct approach

@ Back to standard 1D martingale diffusion where o € Cﬁi’unift([O, T] x R)
dX} = o(t, X} )dW,, X§=xeR.
o If (°) f is smooth then O,E f(X*) = E f'(X*) Y™,

where Y™ is the tangent process:

. t t
y ) :g(/ g;(s,x;)dws) - exp(/ o' (s, XX)dW, — %/ a;(s,xg)2ds).
0 t 0 0
@ Let Q = Y . P, the probability on (€2, .4,P) under which (Girsanov)
t
B = W; —/ o.(s,XX)ds is a standard Q-Brownian motion.
0

@ Then , ,
XX = x + / oo’ (5, XX)ds + / o (s, X.)dB.
0 0

and
O E f(X;‘) = Eg f’(Xf).

6see El Karoui et al. 1998, Robustness of the Black and Scholes formula, Math. Fin.
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Martingale (and scaled) Brownian diffusions = Back to 1D (Jourdain-P. '23, ArXiv)

Direct approach: conclusion (d = 1)

o If oo/ is Lipschitz in space uniformly in time, then (7).

Q-a.s. x~— X is non-decreasing...

@ Hence
Q-a.s. x+— (X)) is non-decreasing...
@ and so is
OE f(XX) = Eqg f'(X).
@ Which ensures that x — [E f(XX) is convex. ]

@ Few comments:
> Free extension for free to any convex function using right derivative f.
> Note that there is no convexity assumption (!) required on o.

> One step beyond: the present proof is one-dimensional. Any hope when
d > 2 to switch from f(X*) ~ F((X{)tep.17) ?

7 . . . ) )
see Thm 3.7, chap. IX, Revuz-Yor, Continuous martingales and Brownian motion, Springer, 3rd ed. 1998
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Martingale (and scaled) Brownian diffusions = Back to 1D (Jourdain-P. '23, ArXiv)

What about monotone convexity (in presence of a convex)

drift) 7

@ If f is smooth then

O E f(X?) — K [f’(X;{) ffOT bl (s,XX)ds YT(XZ} = Eg [f/(Xi)efoT b;(s,XSX)ds]

-~

“new” tangent flow

t t
with X,_f(:X—I—/ (b—l—aa;)(s,Xg)ds#—/ o(s, X )dBs.
0 0

@ If f is convex non-decreasing and b(t,-) is convex in x then ' is
non-negative and non-decreasing and b/ (t, -) is non-decreasing.
Hence

OxE f(XZ) is non-negative non-decreasing

i.e. x — Ef(XX) is is convex non-decreasing.

@ b convex requested but still not o !
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Martingale (and scaled) Brownian diffusions = Back to 1D (Jourdain-P. '23, ArXiv)

A mouse hole 7

Figure: Who is the cat 7 Who is the mouse ?
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Martingale (and scaled) Brownian diffusions = Back to 1D (Jourdain-P. '23, ArXiv)

Smooth ¢ in 1D (d = g = 1): getting rid of convexity

@ Assume 0 : R — R, C?, Lipschitz (|0’ ||cc < +00).
@ True Euler operator, Z ~ N(0,1):

Pf(x) =Ef(x + Vho(x)Z).
@ Assume w.l.g. (see later on) f : R? — R C? and convex, with bounded derivatives
(Pf)'(x) = E[f"(x + Vho(x)Z)(1 + Vho' (x) Z)?]
+ Vho (x)E [ (x+ \/EO'(X)Z) Z|
=E[f"(x + Vho(x)Z) (1 + Vho'(x)Z)?]
+ hoo' (X)E[f"(x + Vho(x)Z)] [stein P Bg'(2) = Eg(2)7]
_E [f”(x +Vho(x)Z) (1 +Vho'(x)2)} + haa”(x))j .

always >0 V Z(w)??

® No ! But...If we truncate :Z ~» Z" = Z1lyz1<a,y, Pf~ Phf, then. ..
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Martingale (and scaled) Brownian diffusions = Back to 1D (Jourdain-P. '23, ArXiv)

@ Then, the same Stein-|.P. transform yields

(P"f)"(x)
_ ]E{f"(x n \/EO'(X)Zh> \((1 +Vho'(x)ZM)? + h(1— e_%(A%—(Zh)2))l{zh;éo}ag//(x))j

-~

always >0V ZM(w)??

® YES !l If Ay = A/Vh with A < for h = L small enough and

/
(o)

(S) o2 semi-convex (IA > 0 s.t. 02 + Ax? convex) (3)

@ It clearly extends the |o| convex case !

@ This semi-convexity property cannot be relaxed at the truncated Euler
scheme level.
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Martingale (and scaled) Brownian diffusions = Back to 1D (Jourdain-P. '23, ArXiv)

@ So we have proved: for every convex C?-function f with bounded
derivatives

x> P'f(x)=E f(x—+ \/EO'(X)Zh) IS convex.

@ f Lipschitz continuous and convex can be approximated by
convolution: let

fo(x) =Ef(x+e€C), ( ~N(0,1).

@ f.is convex, | f as e | 0 and

70) = “E[(Fle+e) ()] and £/(x) = SE[(F(x+e0)~F())(E~1)]

e
are both bounded.
@ As |fe(x)| < [f(x)| + €E|C],

~

b "
P"'f = lim Pf. sothat P"(f) is convex.

e—0

@ We still have that (x, u) — Qf(x) = E f(x + uZ") is convex and
non-decreasing in u on R (see Jensen's inequality revisited!).
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Martingale (and scaled) Brownian diffusions = Back to 1D (Jourdain-P. '23, ArXiv)

@ Let consider the truncated Euler scheme Xh = x(o):h associated with
step h= L (and tf = 1), ie.

thr<1+1 :thlz _I_O-(t/,(77Xt£)Zk—|—17 XO — X
with  ZP = /= (We — W)l
k+1 T Bt te) SWin  —Win|<A}-

@ This scheme satisfies the convex propagation and ordering properties.

o Does it converge strongly in LP toward to the diffusion X()? If “yes”
then we proved:

If o(t,-) satisfies (S) uniformly in t € [0, T] or 6(t, -) satisfies (S)
uniformly in t € [0, T], if

0<o<#6 and Xéa) = v Xée) —vte[0,T], X7 <o X\
and, when o (t,-) satisfies (S) uniformly in t € [0, T],
x—E f(XﬁJ)) IS convex.

@ Extension to a new class of functionals, see later on (with B. Jourdain).
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Martingale (and scaled) Brownian diffusions = Back to 1D (Jourdain-P. '23, ArXiv)

Proof of convergence of truncated Euler scheme

@ Let ()?t’l) be the truncated Euler scheme with step h = L i.e. implemented
with ZJ! := ZkL g 7 1< a/vEy (Zk)k=1:n i.i.d. N(0,1). Then, by independence,

P(X"#X")=P(3ke1:n:|Z]|>A/Vh)
< nP(|Z| > A/Vh).

@ Using P(|Z] > x) < e_%, x>0, (and h = 1)

n

An

P(X" £ X") < ne™?F — 0 as n — +oo.

@ As a consequence (...), if Xo€ LP (P), p’ > p (can be relaxed by a more
direct (hence tedious) approach and an equivariance argument)

H max ’Xth — X!
k=0:n k k

—0 as n— +o0. []
P

@ The original proof can be adapted and finally the semi-convexity (S)
assumption can be relaxed in continuous time.
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Martingale (and scaled) Brownian diffusions = Back to 1D (Jourdain-P. '23, ArXiv)

A 1-marginal 1D result

Theorem (Jourdain-P. 2023)
Leto, € Lipx unic. ([0, T] x R,R). Let X{°) and X®) be the unique strong

solutions to

dx!? = o(t, X' Nd W\, {7 e L1(P)

dX{" = 0(t, X{Yaw?, X" e L}(P), (W'),ci0.17 standard B.M.
(a) IF XS = X3 and

( (s o(t,.)?: R — R, is semi-convex for every t€ [0, T],
or
(i)e 0O(t,.)* : R — R, is semi-convex for every te [0, T],
and

. (i) 0<o(t,r) < 6(t,-) for every te [0, T]

— for every convex f : R —» R, E f(X(?9)) <E f(X)) € (—o0, +]

'\

— if (i), holds true x — E f(X(°)X) is convex.

e Slightly (technically) improves the result by [El karoui et al.] (~ o(t,-) semi-convex).
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Martingale (and scaled) Brownian diffusions = Back to 1D (Jourdain-P. '23, ArXiv)

A 1-marginal 1D result improved

Theorem (Jourdain-P. 2023)

Leto, € Lipy unir, ([0, T] x R,R). Let X(?) and X(®) be the unique strong
solutions to

dx!? = o(t, X' Nd W\, x\7) e 11(P)
dX{" = 0(t, X{Yaw?, X" e L}(P), (W'),ci0.17 standard B.M.
(a) IF XS =ex X and

[ ()o 2
or
q (1)e %)
and
then- L (i) 0<o(t,:) < 0(t,-) for every te [0, T]

— for every convex f : R — R, E f(Xﬁ")) <E f(Xﬁe)) € (—o0, +0]

— if (i), holds true x — E f(X(°)X) is convex.
(b) It also works with diffusions sharing the same affine drift b(t,x) = a(t)x + 5.

e Significantly (technically) improves the result by [El karoui et al.] (~ o(t, )
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Martingale (and scaled) Brownian diffusions =~ Back to 1D (Jourdain-P. '23, ArXiv)

When the drift comes back into the game |l (gentle reminder)

Theorem (Extended Hajek's Theorem, P. 2016, Sém. Prob. XLVIII)

Leto, 8, by, by € Ciin,.unir.([0, T] x R,R). Let X() and X9 pe the unique weak
solutions to

dx!? = by(t, X\)dt + o(t, X)aW'?) | X\ e 111(P)
dx!? = by(t, XNdt + 0(t, XYdW? | x{D e (1P,
with (W')ecq0.77 are a standard 1D B.M. If

()b,,0 b1(t,.) and o(t,-) convex, te [0, T], (= x-Lipschitz Unif;)
or

(by.0 ba(t,.) and O(t,-) convex, te [0, T].
Then, if 0 < o(t,) < 0(t,) and X7 =<ic, X3,

(a) For every F : C([0, T],R) — R, convex, pointwise non-decreasing with
| - ||sup-polynomial growth (hence || . ||sup-continuous)

E F(X()) <EF(X®).
(b) If (i)p,.0 holds then x +— E F(X(?)) is convex.
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Martingale (and scaled) Brownian diffusions = Back to 1D (Jourdain-P. '23, ArXiv)

Back to non-decreasing convex order (d = g = 1):

revisiting Hajek's theorem

@ Assume f : R — R is smooth convex and non-decreasing.

o If
Pf(x) = E f(x + hb(t,x) + Vho(t,x)Z), Z ~ N(0,1)

with b(t,-) and o(t,-) are uniformly Lipschitz then
(Pf)'(x) = E[ f'(x + hb(t,x) + Vho(t,x)Z) (1 + hb'(t, x) + Vhol(t,x)Z)].

>0

@ Note that
L b (%) + VAoL(£,X)Z = 1= BB, Jsup — Vo supl Z].

@ Hence, if 0 < h < (2]|b,||sup]]) ™ then
1+ hb'(t,x) + Vhol(t,x)Z >0 on {|Z| <

e,
2o e

@ Etc, like before (the two ideas can be combined. .. ).
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Martingale (and scaled) Brownian diffusions =~ Back to 1D (Jourdain-P. '23, ArXiv)

When the drift comes back into the game Il

Theorem (Extended Hajek's Theorem, Jourdain-P. 2023)

Leto, B, by, by € Ciin ([0, T] x R, R). Let X(?) and X9 be the unique weak
solutions to

dx!? = by(t, X\)dt + o(t, X)aW'?) | X\ e 111(P)
dx!? = by(t, X'Ndt + 0(t, XdW® | x{D e (1P,
with (W')ecq0.77 are a standard 1D B.M. If

()by.0 bi(t,.) convex, te [0, T], and @
or

(b0 ba(t,.) convex, te [0, T| and @.

Then, if 0 < o(t,) < 0(t,) and X7 =<ic, X3,

(a) For every F : C([0, T],R) — R, convex, pointwise non-decreasing with
| - ||sup-polynomial growth (hence || . ||sup-continuous)

E F(X()) <EF(X).
(b) If (/)py.c holds then x — E F(X(?)) is convex.
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A first conclusion and provisional remarks on 1D setting

@ Relaxing convexity in x of the diffusion coefficient o(t, x) can be seen as a
second extension of Hajek’s theorem (for diffusions with no drift).

@ This result is deeply one dimensional and cannot be extended to higher
dimension at a reasonable level of generality (to our best knowledge).

@ The second results for marginal increasing convex ordering for diffusions
having convex drifts “b7 < b?"" is essentially Hajek's.

@ A combination of the two truncations is possible (in progress with B.
Jourdain) and would be a first strict improvement of Hajek’s theorem.

@ Applications to local volatility models (like CEV) extending results by El
Karoui-Jeanblanc-Shreve to continuous time path-dependent options.
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Martingale (and scaled) Brownian diffusions ~ Directionally convex functionals

Functional extension ? Directionally convex functionals

o A function f : R? — R is directionally convex if
o Vi, x; — f(xq1,...,Xj,...Xq) is convex
o Vj, xj— Oxf(x1,...,Xi,...Xq) is non-decreasing.
or, equivalently, f Is Borel measurable and

VxeR" Vy,zeRY, f(x+y+2z)—f(x+y)—f(x+2z)+f(x)>0.
e A functional F : C([0, T],R) — R is directionally convex if it is
measurable and
Vxe C([0, T],R),Vy,ze C([0, T],Ry),
Fix+y+z)—F(x+y)—F(x+z)+ F(x) >0.

The 1D version of both functional comparison-propagation theorems
remains true (under standard Lipschitz but without convexity assumptions)
for the class of continuous directionally convex functionals on C([0, T],R)

with r-polynomial growth if Xéa) and Xo(m e L"(P).
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Martingale (and scaled) Brownian diffusions ~ Directionally convex functionals

Examples | (R?
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Martingale (and scaled) Brownian diffusions ~ Directionally convex functionals

Examples Il (functional)

@ Smooth directionally convex functionals: if F: C([0, T],R) — R is
C?, F is directionally convex iff

Vx,u, ve C([0, T],R), wu, v>0= D*F(x).(u,v) >0

@ Let p, d: R — R,
)
vx.e C([0, TLR), F(x)= o ( /O go(x(s))ds) |

e F is convex iff ¢ is convex and ® is non-decreasing convex.

e F is directionally convex iff both ¢ and ® are non-decreasing convex.
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Martingale (and scaled) Brownian diffusions ~ Directionally convex functionals

Extensions

This provides as systematic approach which successfully works with

@ Jump diffusions,

@ (Possibly) path-dependent American style options, (Sém. Proba
XLVIII, 2016),

e BSDE (unfortunately without “Z" in the driver),

@ McKean-Vlasov SDEs (with applications to MFG, with Y. Liu (AAP,
2023),

@ Volterra equations (with application to rough volatility modeling, with
B. Jourdain (Fin. & Stoch., 2024)),

@ Stochastic control (a first on going work with C. Yeo) with
application to swing option on gas

Let's have a short look. . .
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Jump diffusions
The case of jump diffusions

> Lévy process: Let Z = (Z;)¢cjo, 77 be a Lévy process with Lévy measure
v satisfying

o / z|*v(dz) < 400 of course. . .
0<|z|<1

o / 2|Pu(dz) < +o0, pe [1,+00) (hence Z € LL(P), te [0, T])
251

o E/ =0.

Then
(Zt)tefo, 7] is an centered F4-martingale.
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Jump diffusions

Theorem (P. 2016, Séminaire de Proba XLVIII , d = q = 1, "weak version”, not
yet updated d, g > 1 but in progress)

Let ki € Ciin, unir, ([0, T] x R), i = 1,2, be continuous functions Let
X (ki) — (Xt(m ))tE[O,T] be the diffusion processes, unique weak solutions to

dX") = ki(t, X" dz,, X" e LP(P), i =1,2.
(a) Z1 centered: Assume k = K1 or kp satisfies: Vte [0, T], k(t,.) convex and
that

0 < k1 < Ko.

c : : :
= k| is convex in x and k; satisfy

(b) Zy radial: If Zy = — 273,

k1| < |Ka2l.

(i) Let F : D([0, T],R) — R be a convex Skorokhod-continuous functional with
r-polynomial growth, r < p

Vae D([0, T],R), |F(a)] < C(1+ [laflyy), 0 <r<p.

(i) If k1(t,-) convex, te [0, T], then for everty F as above

x = E F(X"1)X) s convex.
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Jump diffusions

Key argument when d =g =1

@ Discrete time approach is similar to Brownian diffusions

@ Transfer phase is based on the Skorokhod functional weak
convergence of the Euler scheme toward the martingale jump
diffusion.

@ Which in turn relies on functional weak convergence of stochastic
integrals (see e.g. [Mémin-Jakubowski-P., PTRF, 1989]).

@ A “strong” version with Lipschitz coefficients x; (uniformly in t)
should work, possible without Skorokhod topology.

@ Higher dimensions should work too if Z is radial (but not yet proved
to our best knowledge).
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Bermuda and American options Brownian diffusions

Discrete time optimal stopping (Bermuda options). . .

...of ARCH models in 1-dimension.

> Dynamics: Still... (Zk)i1<k<n be a sequence of independent, (centered
and) symmetric r.v.

Xkr1 = Xk + Ok(Xk) L1, Xo€ Ll(P)
Yier = Ye+0k(Ye)Zki1, 0<k<n-1, Ype Ll(P)

where o, 0k : R — R, k=0,...,n—1 with (at most) linear growth.
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Bermuda and American options Brownian diffusions

Snell envelopes and Bermuda/American options

> Let Fr : R¥™1 - R, k=0,...,n be a sequence of non-negative
convex (payoff) functions with r-polynomial growth for the sup norm.

> Let F = (Fk)o<k<n be a filtration such that Zj is Fy-adapted and Zj
is independent of Fi_1, k=1,...n.

> Snell envelopes of the reward processes (Fk(Xo;k)) and

0<k<n
(Fk(YO:k))ogkgn
U = IP’—esssup{]E(FT(Xo;T) | Fk), T F-stopping time, T > k}
and
Vik = P—esssup{]E(FT(Yo:T) | F«), T F-stopping time, T > k}.

> These are the lowest super-martingales that dominate the reward
processes.
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Bermuda and American options Brownian diffusions

Backward Dynamic programming Principle

Proposition (Backward Dynamic programming Principle (BDDP))

(a) The Snell envelope satistfies
Up, = Fo(Xo:n), Uk = max (Fx(Xok), E (Uks1 | Fk)), k=0:n—1.
(b) One has
U = uk(Xo.x) P-as., k=0,...,n—1,

where the functions u, : R<*1 — R, , k = 0 : n, satisfy the functional
BDDP

Un(x0:n) = Fn(Xon),  Uk(x0:k) = max (Fk (X0:k), Qr+1 Uk+1(X0: k5 Xk + -))(Uk(xk))))
k=0,...,n—1.
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Bermuda and American options Brownian diffusions

@ Propagation of the convexity: Note that (a, b) — max(a, b) is
non-decreasing in @ and b and “copy-paste” the proofs for a fixed functional
using the “revisited” Jensen's Inequality.

(a) Convex ordering. If, either

(%) |ok| is convex for every k =0:n—1

or
(x)o |0k| is convex for every k =0:n—1

and
|O‘k|§|(9k|, k:O,...,n—l

then,
Uk(XO:k) S Vk(XO:k)a k = O, o oo s

(b) Convexity. If (%), holds then

x — ux(Xo.x) Is a convex function on R¥*1,

In particular, if Xo <cx Yo then E Uy = E up(Xp) < E up(Yo)< Ew(Yy) =E V.
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Bermuda and American options Brownian diffusions

> Idem for v, : Rt — R in connection with the (IP, F)-Snell envelope V.

> Note that w1 convex still implies

& — (Qrs1ukt+1(X0:k, +)) (xk, &) is non-decreasing on R,

> Comparison Principle (|ox| < |0«|): Backward induction to prove
ux < vk, k=0: n (obvious if k = n).

Assume i1 < Vir1, k+ 1 < n. For every xg., € RFT1

uk(xo:k) < max (Fk (X0:k) > (Quer-1 tk1 (X0:k5 -) ) (X 9k(Xk)))
< max (Fi( (o) ( Qe vk (x0k ) (0 Ok(x6)) = vie o)
If Kk =0, we get

E U() — UO(X) < VO(X) =K \/0. []
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Bermuda and American options Brownian diffusions

Back to continuous time

> Let F: [0, T] x C([0, T],R?) — R, be a Lipschitz continuous functional and
the resulting American payoffs processes (F(t, (X((’)))t)te[0 r and

(F(E (YD) epo.

> Snell envelopes of the Euler schemes of martingale diffusions X and Y
U™ = P-Snell (F (X7 keon) VI = P-Snell (Fi( Y9 ) kmo:n).

> Convergence: In the case of Brownian diffusions, it is a classical result (with
convergence rates in fact, see e.g. (%) that

H max U() Ut)kg

| =0 and || max |V} — V)Y
0<k<n P k

0<k<n

p—>0asn—>—|—oo

> Etc (limit theorems).

8V. Bally-P. ('03), Error analysis of the quantization algorithm for obstacle problems, Stochastic Processes & Their
Applications, 106(1), 1-40, 2003
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Bermuda and American options Brownian diffusions

> Conclusion: As usual. ..

Theorem (P. 2016)

Under former partitioning or dominating convexity assumptions on o(t,-)
and 6(t,-), F:C([0, T],R) — Ry convex and continuous and Xéa) = Xée)
one has

E Ug((o) <E Vox(9)

(o),x .

and, if o(t,-) is convex, x — up(x) :=E UL is convex.

Warning! No standard “réduites” at time t > 0, due to path-dependence.
If F(t,x) = h(t,x(t)), then u(x) < vi(x) for every te [0, T] if h(t,-) is
convex for every t and hLispchitz.
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Bermuda and American options Jump martingale diffusions

Jump martingale diffusions: what makes problem?

> Discrete time step: Identical.

> From discrete to continuous time: Still the Euler scheme. But we have
to make the Snell envelopes converge. .. How to proceed?

Filtration enlargement argument/trick

Let (Ft)tejo, 7] be a filtration and let Y be an (F;):cjo 71-adapted cadlag
process defined on a probability space (£2,.4,P) so that

vte[0,T], F) C F
We introduce the so-called H-assumption (on the filtration (F)¢co 1)
(H)=VHe FY, bounded, E(H|F;) =E(H|F,)) P-a.s.

Example: F; = o(FY,Z), = 1L Y.
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Bermuda and American options ~ Jump martingale diffusions

Theorem (Lamberton-P., 1990)

(?) > Let (X™)n>1 be a sequence of quasi-left cadlag processes defined on
a probability spaces (2", F",P") of (D)-class and satisfying the Aldous
criterion. Let (7))n>1 be a sequence of (.F X" P")-optimal stopping times.
If (X")n>1 is uniformly integrable and satisfies

ki
X" Y20 x B — P probability measure on (D([0, T],R), D7).

*

> Non-degeneracy of (7)),>1: every limiting value Q of L(X", 7)) on
D([0, T],R) x [0, T] satisties the (H ) property [...], then

lim Ep» U5 = Ep U5’

> If the optimal stopping problem related to (X,Q,D?) has a unique

T . 0,T
solution in distribution, say ut., not depending on Q, then 7, 0.7] [T

ISur I'approximation des réduites, Annales IHP B, 1990.
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Bermuda and American options ~ Jump martingale diffusions

Theorem (P. 2016)

Under the usual assumptions on k;, i = 1,2, the Lévy process (Zt)¢cio, 1]
(through Z1) and the American payoffs (Ft):cpo, 17 (convexity and
polynomial growth) and the ordering of the starting values of the SDEs,
then the Snell envelopes at time 0 associated to (F;) and the jump
diffusions X\F)% =1, 2, satisfy

EUY <E VY.

In particular the resulting “réduites” (when both diffusions start from x)

satisfy
u§™ (x) < u§™ (x)

Moreover, if k1(t,-) si convex for every t€ [0, T], then x — ug'ﬂ)(x) is
convex. )

All the efforts are focused on showing that the filtration enlargement
assumption (#) is satisfied by any limiting distribution Q.
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