
Martingale (and scaled) Brownian di↵usions Functional limit theorem: . . . to continuous time

“Weak” di↵usion setting

Step 2bis (Transfer in the “weak” linear growth continuous setting):
See e.g. [Jacod-Shiryaev’s book 2nd edition, Theorem 3.39,
p.551] (5).

eX (�),n L(k.ksup)�! X (�) and eX (�),n L(k.ksup)�! X (✓) as n ! +1.

We know that, as �(t, ·) and ✓(t, ·) have linear growth
��� sup
t2[0,T ]

| eX (�),n|
���
1+⌘

+
��� sup
t2[0,T ]

| eX (✓),n|
���
1+⌘

 C⌘,T (1 + kX0k1+⌘)

Hence, if F is k · ksup-Lipschitz, then F
� eX (�),n

�
, n � 1, is uniformly

integrable so that

EF (X (�)) = lim
n

EF
� eX (�),n

�
(idem for X (✓)).

Hence EF (X (�))  EF (X (✓)). ⇤
5
Limit theorems for stochastic processes, Springer, 2010.
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Martingale (and scaled) Brownian di↵usions Functional limit theorem: . . . to continuous time

Connection between convexity and convex ordering

Convexity of x 7! EF (X x) can be obtained as a by-product of the proof by
“transferring” convexity property from discrete to continuous time. . .

but also, a posteriori: in this di↵usion framework

Convex ordering =) Convexity .

Let x , y 2 R, �2 [0, 1]. One has

��x+(1��)y �cvx ��x + (1� �)�y .

Assume � = ✓. Let

X (�)
0 = �x + (1� �)y and eX (�)

0 = "x + (1� ")y , " ⇠ Ber({0, 1},�) ?? W .

Then eX (�)
0 ⇠ ��x + (1� �)�y and eX (�) = "X x + (1� ")X y and

E " = � so that, for every l.s.c. convex functional
F : C([0,T ],Rd) ! R,

EF (X�x+(1��)y )  EF ( eX (�)) = �EF (X x) + (1� �)EF (X y ).

Same result for monotone convex orders (see later on).
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Martingale (and scaled) Brownian di↵usions Functional limit theorem: . . . to continuous time

The Euler scheme provides a simulable approximation

which preserves convex order.
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Martingale (and scaled) Brownian di↵usions Local volatility models

Application I : Local Volatility models (functional p.c.o.c).

New notations (e�, e✓ denote now “true” volatility)

dSt = rStdt + St e�(t, St)dW t , S0 = s0 > 0,

where e� : [0,T ]⇥ R ! R+ is a bounded continuous function.

(At least) the weak solution exists and satisfies (see also Feller’s
criterion . . . )

eS (e�)
t := e�rtS (e�)

t = s0e
R
t

0 e�(s,S(�)
s )dBs� 1

2

R
t

0 e�2(s,S(�)
s )ds > 0.

Idem for ✓  ✓(t, x) = xe✓(t, x) (same drift x 7! r x of course).

We assume that
0  e�  e  e✓

and 8 t2 [0,T ], (t, ·) : x 7! xe(t, x) is convex on the whole real line.

G. Pagès (LPSM) Ordre convexe fonctionnel LPSM-Sorbonne Univ. 54 / 124



Martingale (and scaled) Brownian di↵usions Local volatility models

A comparison/propagation result

Theorem (Extension of El Karoui et al. Theorem., P. 2016)

If there exists a function e : [0,T ]⇥ R+ ! R+ such that

(t, ·) : x 7! xe(t, x) is a convex function on R

satisfying

(a) Partitioning: 0  e�(t, .)  e(t, .)  e✓(t, .) on R+, t2 [0,T ],

or

(b) Dominating: |e�(t, .)|  e✓(t, .) = e(t, .·), t2 [0,T ].

Then

(i) For every every convex F : C([0,T ],R+) ! R with polynomial growth

EF
�
S (e�)�  EF

�
S (e✓)�2 (�1,+1].

(ii) If �(t, x) = xe�(t, x) is convex for every t2 [0,T ], then

x 7! EF
�
S (e�),x� is convex.
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Martingale (and scaled) Brownian di↵usions Local volatility models

Figure: Left: flat partitioning. Right: flat bounding (El Karoui et al.).

This theorem contains Carr et al. & Baker-Yor theorem(s).

The method of proof applies to American style options, Lévy driven
di↵usions, stochastic integrals, etc (see P. 2016 and later on).

Warning ! (1D-)Misltein scheme: does not propagate convexity.

G. Pagès (LPSM) Ordre convexe fonctionnel LPSM-Sorbonne Univ. 56 / 124



Martingale (and scaled) Brownian di↵usions Concave local volatility models (with A. Fadili)

Application II: Concave Local Vol. models (with A. Fadili)

Concave Local Volatility (CLV) models (3 CEV): let

�(x) = x e�(x) > 0, concave " on (0,+1), �(x) = 0, x  0, continuous.

dSt = �(St)dWt , S0 = s0 > 0,

s.t. the (unique possible weak) solution satisfies St � 0, t2 [0,T ].
Example. (Discounted) CEV model (r = 0) [which hits 0 a.s.. . . Ok]:

St = s0 + #

Z
t

0

p
SsdWs , t2 [0,T ].

Then, for every fixed u > 0, the concavity property implies

�(x) 
⇣
�(u) + �0(u)(x � u)

⌘

+
, x 2 R+

so that, if we set

dX (u)
t =

⇣
�(u) + �0(u)(X (u)

t � u)
⌘

+
dWt , X

(u)
0 = s0

then, for every convex vanilla payo↵ ' : R+ ! R+

E'(ST )  infu>0 E'
�
X (u)

T

�
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Martingale (and scaled) Brownian di↵usions Concave local volatility models (with A. Fadili)

Figure: Black-Scholes convex domination of a Local Volatility model.
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Martingale (and scaled) Brownian di↵usions Concave local volatility models (with A. Fadili)

Back to Black(-Scholes)

Set ⇠(u) := �0(u)
�(u) � u > 0 (by concavity). Hence

X (u)
t + ⇠(u) = s0 + ⇠(u)| {z }

>0

+

Z
t

0
�0(u)| {z }
�0

�
X (u)
s + ⇠(u)

�+
dWs .

By strong uniqueness, X (u)
t + ⇠(u) = Y (u)

t where Y (u) satisfies
Black-Scholes dynamics

Y (u)
t = Y (u)

0 + �0(u)

Z
t

0
Y (u)
s dWs .

Example: if '(x) = (x � K )+ is a vanilla Call payo↵

E (ST � K )+  inf
u>0

CallBS
⇣
s0 + ⇠(u),K + ⇠(u),�0(u), 0,T

⌘
.
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Martingale (and scaled) Brownian di↵usions Concave local volatility models (with A. Fadili)

Proposition (Tractable upper-bound)

One has

(i) u 7! E (Y (u)
T

� K )+ is di↵erentiable and @
@uE (Y (u)

T
� K )+ � 0 on⇥

max(s0,K ),+1
�

(ii) Hence

E (ST � K )+  min
0umax(s0,K)

CallBS
�
s0 + ⇠(u),K + ⇠(u),�0(u)

�

leading to a faster search for the argmin.

Practitioner’s corner: – In fact umin lies not far from s0 and K .

– Exploration starting from s0+K

2 .
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Martingale (and scaled) Brownian di↵usions Concave local volatility models (with A. Fadili)

Back to 1D-models

Question: is convexity of � always mandatory (e.g. in one dimension)?

At least for some specific functionals ?
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Martingale (and scaled) Brownian di↵usions Back to 1D (Jourdain-P. ’23, ArXiv)

Is convexity necessary ? �(t, x) = �(x), d = q = 1

We assume for a while that d = q = 1.

One shows [Jourdain-P. ’23] that (when d = 1)

r
2

⇡
|�(x)| = lim

t!0

1p
t
E|X x

t �x | = lim
t!0

1p
t
E|X x

t �X x

0 | = lim
t!0

1p
t
EFt(X x)

with Ft(↵) = |↵(t)� ↵(0)| an (only) 2-marginal convex functionals.

As soon as convexity propagation for 2-marginal functionals holds
true then |�| is convex !!

Conclusion: The convexity assumption on either � or # is mandatory
. . . except, maybe, for 1-marginal convex order when d = q = 1.
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Martingale (and scaled) Brownian di↵usions Back to 1D (Jourdain-P. ’23, ArXiv)

A discrete time counterexample: back to ARCH

Still with

X x

k+1 = X x

k
+ �k(X

x

k
)Zk+1, k = 0, n � 1, X0 = x 2 L1(P).

Assume that, for every (Lipschitz) convex function F : R2 ! R,
x 7! EF (Xk ,X`) is convex.

Then x 7! E|X x

1 � x | is convex i.e.

x 7�! E|�0(x)Z1| = |�0(x)|E |Z1| is convex.

Hence x 7! |�0(x)| is convex.
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Martingale (and scaled) Brownian di↵usions Back to 1D (Jourdain-P. ’23, ArXiv)

1-marginal of 1D di↵usion (after [El Karoui et al.]) Direct approach

Back to standard 1D martingale di↵usion where �2 C0,1
linx ,Unift

([0,T ]⇥ R)
dX x

t
= �(t,X x

t
)dWt , X x

0 = x 2 R.

If (6) f is smooth then @xE f (X x

T
) = E f 0(X x

T
)Y (x)

T
,

where Y (x) is the tangent process:

Y (x)
t = E

⇣Z ·

0
�0
x
(s,X x

s
)dWs

⌘

t

:= exp
⇣Z t

0
�0
x
(s,X x

s
)dWs � 1

2

Z
t

0
�0
x
(s,X x

s
)2ds

⌘
.

Let Q = Y (x)
T

· P, the probability on (⌦,A,P) under which (Girsanov)

Bt = Wt �
Z

t

0
�0
x
(s,X x

s
)ds is a standard Q-Brownian motion.

Then

X x

t
= x +

Z
t

0
��0

x
(s,X x

s
)ds +

Z
t

0
�(s,Xs)dBs

and
@xE f (X x

T
) = EQ f 0(X x

T
).

6
see El Karoui et al. 1998, Robustness of the Black and Scholes formula, Math. Fin.
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Martingale (and scaled) Brownian di↵usions Back to 1D (Jourdain-P. ’23, ArXiv)

Direct approach: conclusion (d = 1)

If ��0
x is Lipschitz in space uniformly in time, then (7).

Q-a.s. x 7! X x

t is non-decreasing . . .

Hence
Q-a.s. x 7! f 0(X x

t ) is non-decreasing . . .

and so is
@xE f (X x

T
) = EQ f 0(X x

T
).

Which ensures that x 7! E f (X x

T
) is convex. ⇤

Few comments:

B Free extension for free to any convex function using right derivative f 0
r
.

B Note that there is no convexity assumption (!) required on �.

B One step beyond: the present proof is one-dimensional. Any hope when
d � 2 to switch from f (X x

T
) F

�
(X x

t
)t2[0,T ]) ?

7
see Thm 3.7, chap. IX, Revuz-Yor, Continuous martingales and Brownian motion, Springer, 3rd ed. 1998
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Martingale (and scaled) Brownian di↵usions Back to 1D (Jourdain-P. ’23, ArXiv)

What about monotone convexity (in presence of a convex)
drift) ?

If f is smooth then

@xE f (X x

T
) = E

h
f 0(X x

T
) e

R
T

0 b
0
x (s,X

x
s )dsY (x)

T| {z }
“new” tangent flow

i
= EQ

⇥
f 0(X x

T
)e

R
T

0 b
0
x (s,X

x
s )ds

i

with X x

t = x +

Z
t

0

�
b + ��0

x

�
(s,X x

s )ds +

Z
t

0
�(s,X x

s )dBs .

If f is convex non-decreasing and b(t, ·) is convex in x then f 0 is
non-negative and non-decreasing and b0x(t, ·) is non-decreasing.
Hence

@xE f (X x

T
) is non-negative non-decreasing

i.e. x 7! E f (X x

T
) is is convex non-decreasing.

b convex requested but still not � !
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Martingale (and scaled) Brownian di↵usions Back to 1D (Jourdain-P. ’23, ArXiv)

A mouse hole ?

Figure: Who is the cat ? Who is the mouse ?
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Martingale (and scaled) Brownian di↵usions Back to 1D (Jourdain-P. ’23, ArXiv)

Smooth � in 1D (d = q = 1): getting rid of convexity

Assume � : R ! R+ C2, Lipschitz (k�0k1 < +1).

True Euler operator, Z ⇠ N (0, 1):

Pf (x) = E f
�
x +

p
h�(x)Z

�
.

Assume w.l.g. (see later on) f : Rd ! R C2 and convex, with bounded derivatives

(Pf )00(x) = E
⇥
f 00(x +

p
h�(x)Z

�
(1 +

p
h�0(x)Z)2

⇤

+
p
h�00(x)E

⇥
f 0(x +

p
h�(x)Z

�
Z
⇤

= E
⇥
f 00(x +

p
h�(x)Z

�
(1 +

p
h�0(x)Z)2

⇤

+ h��00(x)E
⇥
f 00(x +

p
h�(x)Z)

⇤
[Stein I.P.: Eg0(Z) = Eg(Z)Z]

= E
h
f 00(x +

p
h�(x)Z

� �
(1 +

p
h�0(x)Z)2 + h��00(x)

�
| {z }

always �0 8 Z(!)??

i
.

No ! But. . . If we truncate :Z  Zh = Z1{|Z |Ah}, Pf  P̃hf , then. . .
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Martingale (and scaled) Brownian di↵usions Back to 1D (Jourdain-P. ’23, ArXiv)

Then, the same Stein-I.P. transform yields

(P̃hf )00(x)

= E
h
f 00(x +

p
h�(x)Z h

� �
(1 +

p
h�0(x)Z h)2 + h

�
1� e�

1
2 (A

2
h
�(Zh)2)

�
1{Zh 6=0}��

00(x)
�

| {z }
always �0 8 Zh(!)??

i
.

YES !! If Ah = A/
p
h with A < 1

k�0k1
for h = T

n
small enough and

(S) �2 semi-convex (9� � 0 s.t. �2 + �x2 convex) (3)

It clearly extends the |�| convex case !

This semi-convexity property cannot be relaxed at the truncated Euler
scheme level.
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Martingale (and scaled) Brownian di↵usions Back to 1D (Jourdain-P. ’23, ArXiv)

So we have proved: for every convex C2-function f with bounded
derivatives

x 7! P̃hf (x) = E f
�
x +

p
h�(x)Zh

�
is convex.

f Lipschitz continuous and convex can be approximated by
convolution: let

f✏(x) = E f (x + ✏⇣), ⇣ ⇠ N (0, 1).

f✏ is convex, # f as ✏ # 0 and

f 0✏ (x) =
1

✏
E
⇥
(f (x+✏⇣)�f (x))⇣

⇤
and f 00✏ (x) =

1

✏2
E
⇥
(f (x+✏⇣)�f (x))(⇣2�1)

⇤

are both bounded.
As |f✏(x)|  |f (x)|+ ✏E|⇣|,

P̃hf =
#

lim
✏!0

P̃f✏ so that P̃h(f ) is convex.

We still have that (x , u) 7! Q̃f (x) = E f (x + uZ h) is convex and
non-decreasing in u on R+ (see Jensen’s inequality revisited!).
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Martingale (and scaled) Brownian di↵usions Back to 1D (Jourdain-P. ’23, ArXiv)

Let consider the truncated Euler scheme eX h = eX (�),h associated with
step h = T

n
(and tn

k
= kT

n
), i.e.

eX h

tn
k+1

= eX h

tn
k

+ �(tn
k
, eX h

tn
k

)Zh

k+1, eX h

0 = x

with Zh

k+1 =

r
n

T

�
W tn

k+1
�W tn

k

�
1{|Wtn

k+1
�Wtn

k

|A}.

This scheme satisfies the convex propagation and ordering properties.

Does it converge strongly in Lp toward to the di↵usion X (�)? If “yes”
then we proved:

If �(t, ·) satisfies (S) uniformly in t 2 [0,T ] or ✓(t, ·) satisfies (S)
uniformly in t 2 [0,T ], if

0  �  ✓ and X (�)
0 �cvx X (✓)

0 =) 8 t2 [0,T ], X (�)
t �cvx X (✓)

t

and, when �(t, ·) satisfies (S) uniformly in t 2 [0,T ],

x 7! E f (X (�)
T

) is convex.

Extension to a new class of functionals, see later on (with B. Jourdain).
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Martingale (and scaled) Brownian di↵usions Back to 1D (Jourdain-P. ’23, ArXiv)

Proof of convergence of truncated Euler scheme

Let (X̃ h

tk
) be the truncated Euler scheme with step h = T

n
i.e. implemented

with Z h

k
:= Zk1{|Zk |A/

p
h}, (Zk)k=1:n i.i.d. N (0, 1). Then, by independence,

P( eX h 6= X̄ n) = P
�
9 k2 1 : n : |Zk | � A/

p
h
�

 n P(|Z | � A/
p
h).

Using P(|Z | � x)  e�
x
2

2 , x > 0, (and h = T

n
)

P( eX h 6= X̄ n)  n e�
An

2T ! 0 as n ! +1.

As a consequence (. . . ), if X02 Lp
0
(P), p0 > p (can be relaxed by a more

direct (hence tedious) approach and an equivariance argument)
��� max

k=0:n

�� eX h

tk
� X̄ n

tk

���
p

! 0 as n ! +1. ⇤

The original proof can be adapted and finally the semi-convexity (S)
assumption can be relaxed in continuous time.
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Martingale (and scaled) Brownian di↵usions Back to 1D (Jourdain-P. ’23, ArXiv)

A 1-marginal 1D result

Theorem (Jourdain-P. 2023)

Let�, ✓2 Lipx,unift ([0,T ]⇥ R,R). Let X (�) and X (✓) be the unique strong
solutions to

dX (�)
t = �(t,X (�)

t )dW (�)
t , X (�)

0 2 L1(P)

dX (✓)
t = ✓(t,X (✓)

t )dW (✓)
t , X (✓)

0 2 L1(P), (W (·)
t )t2[0,T ] standard B.M.

(a) If X (�)
0 �cvx X (✓)

0 and8
>>>><

>>>>:

(i)� �(t, .)2 : R ! R+ is semi-convex for every t2 [0,T ],
or
(i)✓ ✓(t, .)2 : R ! R+ is semi-convex for every t2 [0,T ],
and
(ii) 0  �(t, ·)  ✓(t, ·) for every t2 [0,T ]then:

– for every convex f : R ! R, E f (X (�)
T

)  E f (X (✓)
T

)2 (�1,+1]

– if (i)� holds true x 7! E f (X (�),x
T

) is convex.

• Slightly (technically) improves the result by [El karoui et al.] (' �(t, ·) semi-convex).
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Martingale (and scaled) Brownian di↵usions Back to 1D (Jourdain-P. ’23, ArXiv)

A 1-marginal 1D result improved

Theorem (Jourdain-P. 2023)

Let�, ✓2 Lipx,unift ([0,T ]⇥ R,R). Let X (�) and X (✓) be the unique strong
solutions to

dX (�)
t = �(t,X (�)

t )dW (�)
t , X (�)

0 2 L1(P)

dX (✓)
t = ✓(t,X (✓)

t )dW (✓)
t , X (✓)

0 2 L1(P), (W (·)
t )t2[0,T ] standard B.M.

(a) If X (�)
0 �cvx X (✓)

0 and8
>>>><

>>>>:

(i)� ?
or
(i)✓ ?
and
(ii) 0  �(t, ·)  ✓(t, ·) for every t2 [0,T ]then:

– for every convex f : R ! R, E f (X (�)
T

)  E f (X (✓)
T

)2 (�1,+1]

– if (i)� holds true x 7! E f (X (�),x
T

) is convex.
(b) It also works with di↵usions sharing the same a�ne drift b(t, x) = ↵(t)x + �.

• Significantly (technically) improves the result by [El karoui et al.] (' �(t, ·)
semi-convex)G. Pagès (LPSM) Ordre convexe fonctionnel LPSM-Sorbonne Univ. 74 / 124



Martingale (and scaled) Brownian di↵usions Back to 1D (Jourdain-P. ’23, ArXiv)

When the drift comes back into the game III (gentle reminder)

Theorem (Extended Hajek’s Theorem, P. 2016, Sém. Prob. XLVIII)

Let�, ✓, b1, b22 Clinx ,Unift ([0,T ]⇥ R,R). Let X (�) and X (✓) be the unique weak
solutions to

dX (�)
t = b1(t,X

(�)
t )dt + �(t,X (�)

t )dW (�)
t , X (�)

0 2 L1+⌘(P)
dX (✓)

t = b2(t,X
(✓)
t )dt + ✓(t,X (✓)

t )dW (✓)
t , X (✓)

0 2 L1+⌘(P),
with (W (·)

t )t2[0,T ] are a standard 1D B.M. If

(i)b1,� b1(t, .) and �(t, ·) convex, t2 [0,T ], () x-Lipschitz Unift)
or

(i)b2,✓ b2(t, .) and ✓(t, ·) convex, t2 [0,T ].

Then, if 0  �(t, ·)  ✓(t, ·) and X (�)
0 �icv X (✓)

0 ,

(a) For every F : C([0,T ],R) ! R, convex, pointwise non-decreasing with
k . ksup-polynomial growth (hence k . ksup-continuous)

EF (X (�))  EF (X (✓)).

(b) If (i)b1,� holds then x 7! EF (X (�)) is convex.
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Martingale (and scaled) Brownian di↵usions Back to 1D (Jourdain-P. ’23, ArXiv)

Back to non-decreasing convex order (d = q = 1):
revisiting Hajek’s theorem

Assume f : R ! R is smooth convex and non-decreasing.

If
Pf (x) = E f (x + hb(t, x) +

p
h�(t, x)Z ), Z ⇠ N (0, 1)

with b(t, ·) and �(t, ·) are uniformly Lipschitz then

(Pf )0(x) = E
⇥
f 0(x + hb(t, x) +

p
h�(t, x)Z )| {z }

�0

(1 + hb0(t, x) +
p
h�0

x
(t, x)Z )

⇤
.

Note that

1 + hb0(t, x) +
p
h�0

x
(t, x)Z � 1� hkb0

x
ksup �

p
hk�0

x
ksup|Z |.

Hence, if 0 < h < (2kb0
x
ksupk)�1 then

1 + hb0(t, x) +
p
h�0

x
(t, x)Z � 0 on

�
|Z |  1

2
p
hk�0

x
ksup

 
.

Etc, like before (the two ideas can be combined. . . ).
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Martingale (and scaled) Brownian di↵usions Back to 1D (Jourdain-P. ’23, ArXiv)

When the drift comes back into the game III

Theorem (Extended Hajek’s Theorem, Jourdain-P. 2023)

Let�, ✓, b1, b22 Clinx ([0,T ]⇥ R,R). Let X (�) and X (✓) be the unique weak
solutions to

dX (�)
t = b1(t,X

(�)
t )dt + �(t,X (�)

t )dW (�)
t , X (�)

0 2 L1+⌘(P)
dX (✓)

t = b2(t,X
(✓)
t )dt + ✓(t,X (✓)

t )dW (✓)
t , X (✓)

0 2 L1+⌘(P),
with (W (·)

t )t2[0,T ] are a standard 1D B.M. If

(i)b1,� b1(t, .) convex, t2 [0,T ], and ?
or

(i)b2,✓ b2(t, .) convex , t2 [0,T ] and ?.

Then, if 0  �(t, ·)  ✓(t, ·) and X (�)
0 �icv X (✓)

0 ,

(a) For every F : C([0,T ],R) ! R, convex, pointwise non-decreasing with
k . ksup-polynomial growth (hence k . ksup-continuous)

EF (X (�))  EF (X (✓)).

(b) If (i)b1,� holds then x 7! EF (X (�)) is convex.
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Martingale (and scaled) Brownian di↵usions Back to 1D (Jourdain-P. ’23, ArXiv)

A first conclusion and provisional remarks on 1D setting

Relaxing convexity in x of the di↵usion coe�cient �(t, x) can be seen as a
second extension of Hajek’s theorem (for di↵usions with no drift).

This result is deeply one dimensional and cannot be extended to higher
dimension at a reasonable level of generality (to our best knowledge).

The second results for marginal increasing convex ordering for di↵usions
having convex drifts “b�  b✓”’ is essentially Hajek’s.

A combination of the two truncations is possible (in progress with B.
Jourdain) and would be a first strict improvement of Hajek’s theorem.

Applications to local volatility models (like CEV) extending results by El
Karoui-Jeanblanc-Shreve to continuous time path-dependent options.
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Martingale (and scaled) Brownian di↵usions Directionally convex functionals

Functional extension ? Directionally convex functionals

A function f : Rd ! R is directionally convex if
8 i , xi 7! f (x1, . . . , xi , . . . xd) is convex
8 j , xj 7! @xi f (x1, . . . , xi , . . . xd) is non-decreasing.

or, equivalently, f Is Borel measurable and

8 x 2 Rm, 8 y , z2 Rm

+, f (x + y + z)� f (x + y)� f (x + z) + f (x) � 0.

A functional F : C([0,T ],R) ! R is directionally convex if it is
measurable and

8x 2 C([0,T ],R), 8 y , z2 C([0,T ],R+),

F (x + y + z)� F (x + y)� F (x + z) + F (x) � 0.

Theorem

The 1D version of both functional comparison-propagation theorems
remains true (under standard Lipschitz but without convexity assumptions)
for the class of continuous directionally convex functionals on C ([0,T ],R)
with r -polynomial growth if X (�)

0 and X (#)
0 2 Lr (P).
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Martingale (and scaled) Brownian di↵usions Directionally convex functionals

Examples I (Rd)

Figure: Comparing various convexities
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Martingale (and scaled) Brownian di↵usions Directionally convex functionals

Examples II (functional)

Smooth directionally convex functionals: if F : C ([0,T ],R) ! R is
C2, F is directionally convex i↵

8x , u, v 2 C ([0,T ],R), u, v � 0 =) D2F (x).(u, v) � 0

Let ', � : R ! R,

8x ,2 C ([0,T ],R) , F (x) = �

✓Z
T

0
'(x(s))ds

◆
.

F is convex i↵ ' is convex and � is non-decreasing convex.

F is directionally convex i↵ both ' and � are non-decreasing convex.
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Martingale (and scaled) Brownian di↵usions Directionally convex functionals

Extensions

This provides as systematic approach which successfully works with

Jump di↵usions,

(Possibly) path-dependent American style options, (Sém. Proba
XLVIII, 2016),

BSDE (unfortunately without “Z” in the driver),

McKean-Vlasov SDEs (with applications to MFG, with Y. Liu (AAP,
2023),

Volterra equations (with application to rough volatility modeling, with
B. Jourdain (Fin. & Stoch., 2024)),

Stochastic control (a first on going work with C. Yeo) with
application to swing option on gas

. . .

Let’s have a short look. . .
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Jump di↵usions

The case of jump di↵usions

B Lévy process: Let Z = (Zt)t2[0,T ] be a Lévy process with Lévy measure
⌫ satisfyingZ

0<|z|1
|z |2⌫(dz) < +1 of course. . .

Z

|z|�1
|z |p⌫(dz) < +1, p2 [1,+1) (hence Zt 2 L1(P), t2 [0,T ]).

EZ1 = 0.

Then
(Zt)t2[0,T ] is an centered FZ -martingale.
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Jump di↵usions

Theorem (P. 2016, Séminaire de Proba XLVIII , d = q = 1, “weak version”, not
yet updated d , q � 1 but in progress)

Let i 2 Clinx ,unift ([0,T ]⇥ R), i = 1, 2, be continuous functions Let

X (i ) = (X (i )
t )t2[0,T ] be the di↵usion processes, unique weak solutions to

dX (i )
t = i (t,X

(i )
t� )dZt , X

(i )
0 2 Lp(P), i = 1, 2.

(a) Z1 centered: Assume  = 1 or 2 satisfies: 8 t2 [0,T ], (t, .) convex and
that

0  1  2.

(b) Z1 radial: If Z1
L
= �Z1, || is convex in x and i satisfy

|1|  |2|.

(i) Let F : D([0,T ],R) ! R be a convex Skorokhod-continuous functional with
r -polynomial growth, r < p

8↵2 D([0,T ],R), |F (↵)|  C (1 + k↵krsup), 0 < r < p.

(ii) If 1(t, ·) convex, t2 [0,T ], then for everty F as above

x 7! EF (X (1),x) is convex.

Then EF (X (1))  EF (X (2)).
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Jump di↵usions

Key argument when d = q = 1

Discrete time approach is similar to Brownian di↵usions

Transfer phase is based on the Skorokhod functional weak
convergence of the Euler scheme toward the martingale jump
di↵usion.

Which in turn relies on functional weak convergence of stochastic
integrals (see e.g. [Mémin-Jakubowski-P., PTRF, 1989]).

A “strong” version with Lipschitz coe�cients i (uniformly in t)
should work, possible without Skorokhod topology.

Higher dimensions should work too if Z is radial (but not yet proved
to our best knowledge).
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Bermuda and American options Brownian di↵usions

Discrete time optimal stopping (Bermuda options). . .

. . . of ARCH models in 1-dimension.

B Dynamics: Still. . . (Zk)1kn be a sequence of independent, (centered
and) symmetric r.v.

Xk+1 = Xk + �k(Xk)Zk+1, X02 L1(P)
Yk+1 = Yk + ✓k(Yk)Zk+1, 0  k  n � 1, Y02 L1(P)

where �k , ✓k : R ! R, k = 0, . . . , n � 1 with (at most) linear growth.

G. Pagès (LPSM) Ordre convexe fonctionnel LPSM-Sorbonne Univ. 86 / 124



Bermuda and American options Brownian di↵usions

Snell envelopes and Bermuda/American options

B Let Fk : Rk+1 ! R+, k = 0, . . . , n be a sequence of non-negative
convex (payo↵) functions with r -polynomial growth for the sup norm.

B Let F = (Fk)0kn be a filtration such that Zk is Fk -adapted and Zk

is independent of Fk�1, k = 1, . . . n.

B Snell envelopes of the reward processes
�
Fk(X0:k)

�
0kn

and�
Fk(Y0:k)

�
0kn

Uk = P-esssup
n
E
�
F⌧ (X0:⌧ ) | Fk

�
, ⌧ F-stopping time, ⌧ � k

o

and

Vk = P-esssup
n
E
�
F⌧ (Y0:⌧ ) | Fk

�
, ⌧ F-stopping time, ⌧ � k

o
.

B These are the lowest super-martingales that dominate the reward
processes.
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Bermuda and American options Brownian di↵usions

Backward Dynamic programming Principle

Proposition (Backward Dynamic programming Principle (BDDP))

(a) The Snell envelope satisfies

Un = Fn(X0:n), Uk = max
�
Fk(X0:k),E (Uk+1 | Fk)

�
, k = 0 : n � 1.

(b) One has

Uk = uk(X0:k) P-a.s., k = 0, . . . , n � 1,

where the functions uk : Rk+1 ! R+, k = 0 : n, satisfy the functional
BDDP

un(x0;n) = Fn(x0;n), uk(x0:k) = max
⇣
Fk

�
x0:k),Qk+1uk+1(x0:k , xk + .)

�
(�k(xk))

�⌘

k = 0, . . . , n � 1.
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Bermuda and American options Brownian di↵usions

Propagation of the convexity: Note that (a, b) 7! max(a, b) is
non-decreasing in a and b and “copy-paste” the proofs for a fixed functional
using the “revisited” Jensen’s Inequality.

Proposition

(a) Convex ordering. If, either

8
<

:

(⇤)� |�k | is convex for every k = 0 : n � 1
or
(⇤)✓ |✓k | is convex for every k = 0 : n � 1

and
|�k |  |✓k |, k = 0, . . . , n � 1

then,
uk(x0:k)  vk(x0:k), k = 0, . . . , n.

(b) Convexity. If (⇤)� holds then

x 7�! uk(x0:k) is a convex function on Rk+1.

In particular, if X0 �cvx Y0 then EU0 = E u0(X0)  E u0(Y0) E v0(Y0) = EV0.
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Bermuda and American options Brownian di↵usions

. . .

B Idem for vk : Rk+1 ! R in connection with the (P,F)-Snell envelope V .

B Note that uk+1 convex still implies

⇠ 7�!
�
Qk+1uk+1(x0:k , ·)

�
(xk , ⇠) is non-decreasing on R+.

B Comparison Principle (|�k |  |✓k |): Backward induction to prove
uk  vk , k = 0 : n (obvious if k = n).

Assume uk+1  vk+1, k + 1  n. For every x0:k 2 Rk+1

uk(x0:k)  max
⇣
Fk
�
x0:k

�
,
�
Qk+1uk+1(x0:k , ·)

�
(xk , ✓k(xk))

⌘

 max
⇣
Fk
�
(x0:k

�
,
�
Qk+1vk+1(x0:k , ·)

�
(xk , ✓k(xk))

⌘
=vk(x0:k).

If k = 0, we get

EU0 = u0(x)  v0(x) = EV0. ⇤
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Bermuda and American options Brownian di↵usions

Back to continuous time

B Let F : [0,T ]⇥ C([0,T ],Rd) ! R+ be a Lipschitz continuous functional and
the resulting American payo↵s processes

�
F (t, (X (�)))t

�
t2[0,T ]

and
�
F (t, (Y (✓))t)

�
t2[0,T ]

.

B Snell envelopes of the Euler schemes of martingale di↵usions X and Y

U(n) = P-Snell
�
Fk(X̄

(�),n
0:k )k=0:n

�
V (n) = P-Snell

�
Fk(Ȳ

(✓),n
0:k )k=0:n

�
.

B Convergence: In the case of Brownian di↵usions, it is a classical result (with
convergence rates in fact, see e.g . (8) that

�� max
0kn

|U(n)
k

� UX

tn
k

|
��
p
! 0 and

�� max
0kn

|V (n)
k

� V Y

tn
k

|
��
p
! 0 as n ! +1

B Etc (limit theorems).

8
V. Bally-P. (’03), Error analysis of the quantization algorithm for obstacle problems, Stochastic Processes & Their

Applications, 106(1), 1-40, 2003
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Bermuda and American options Brownian di↵usions

B Conclusion: As usual. . .

Theorem (P. 2016)

Under former partitioning or dominating convexity assumptions on �(t, ·)
and ✓(t, ·), F : C([0,T ],R) ! R+ convex and continuous and X (�)

0 � X (✓)
0

one has
EUX

(�)

0  EV X
(✓)

0

and, if �(t, ·) is convex, x 7! u0(x) := EUX
(�),x

0 is convex.

Warning! No standard “réduites” at time t > 0, due to path-dependence.
If F (t, x) = h

�
t, x(t)

�
, then ut(x)  vt(x) for every t2 [0,T ] if h(t, ·) is

convex for every t and hLispchitz .
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Bermuda and American options Jump martingale di↵usions

Jump martingale di↵usions: what makes problem?

B Discrete time step: Identical.

B From discrete to continuous time: Still the Euler scheme. But we have
to make the Snell envelopes converge. . . How to proceed?

Filtration enlargement argument/trick

Let (Ft)t2[0,T ] be a filtration and let Y be an (Ft)t2[0,T ]-adapted càdlàg
process defined on a probability space (⌦,A,P) so that

8 t2 [0,T ], FY

t ⇢ Ft

We introduce the so-called H-assumption (on the filtration (Ft)t2[0,T ]):

(H) ⌘ 8H2 FY

T
, bounded, E

�
H | Ft

�
= E

�
H | FY

t

�
P-a.s.

Example: Ft = �(FY
t ,⌅), ⌅ ?? Y .
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Bermuda and American options Jump martingale di↵usions

Theorem (Lamberton-P., 1990)

(a) B Let (X n)n�1 be a sequence of quasi-left càdlàg processes defined on
a probability spaces (⌦n,Fn,Pn) of (D)-class and satisfying the Aldous
criterion. Let (⌧⇤n )n�1 be a sequence of

�
FX

n

,Pn)-optimal stopping times.
If (X n)n�1 is uniformly integrable and satisfies

X n L(Skor)�! X , P
X
= P probability measure on (D([0,T ],R),DT ).

B Non-degeneracy of (⌧⇤n )n�1: every limiting value Q of L(X n, ⌧⇤n ) on
D([0,T ],R)⇥ [0,T ] satisfies the (H) property [. . . ], then

lim
n

EPn UX
n

0 = EP U
X

0 .

B If the optimal stopping problem related to (X ,Q,D✓) has a unique

solution in distribution, say µ⇤
⌧⇤ , not depending on Q, then ⌧⇤n

[0,T ]�! µ⇤
⌧⇤ .

a
Sur l’approximation des réduites, Annales IHP B, 1990.
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Bermuda and American options Jump martingale di↵usions

Theorem (P. 2016)

Under the usual assumptions on i , i = 1, 2, the Lévy process (Zt)t2[0,T ]

(through Z1) and the American payo↵s (Ft)t2[0,T ] (convexity and
polynomial growth) and the ordering of the starting values of the SDEs,
then the Snell envelopes at time 0 associated to (Ft) and the jump
di↵usions X (i ),x , i = 1, 2, satisfy

EU(1)
0  EV (1)

0 .

In particular the resulting “réduites” (when both di↵usions start from x)
satisfy

u(1)
0 (x)  u(2)

0 (x)

Moreover, if 1(t, ·) si convex for every t2 [0,T ], then x 7! u(1)
t (x) is

convex.

All the e↵orts are focused on showing that the filtration enlargement
assumption (H) is satisfied by any limiting distribution Q.
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